Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53031#.VLSCzcnQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53031#.VLSCzcnQrzE
ABSTRACT
This work is intended to define a new possible methodology for TiO2
doping through the use of electrochemical deposition of tantalum
directly on the titanium nanotubes obtained by a previous galvanostatic
anodization treatment in an ethylene glycol solution. This method does
not seem to cause any influence on the nanotube structure, showing final
products with news and interesting features with respect to the
unmodified sample. Together with a decrease in the band gap and flat
band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.
Cite this paper
References
Pozio, A. (2015) Effect of Tantalum Doping on TiO2 Nanotube Arrays for Water-Splitting. Modern Research in Catalysis, 4, 1-12. doi: 10.4236/mrc.2015.41001.
[1] | Gong,
A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and
Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic
Oxidation. Journal of Materials Research, 16, 3331-3334. http://dx.doi.org/10.1557/JMR.2001.0457 |
[2] | Mor,
G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A.
(2003) Fabrication of Tapered, Conical-Shaped Titania Nanotubes. Journal
of Materials Research, 18, 2588-2593. http://dx.doi.org/10.1557/JMR.2003.0362 |
[3] | Cai,
Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) The Effect of
Electrolyte Composition on the Fabrication of Self-Organized Titanium
Oxide Nanotube Arrays by Anodic Oxidation. Journal of Materials
Research, 20, 230-236. http://dx.doi.org/10.1557/JMR.2005.0020 |
[4] | Kontos,
A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J.,
Schmuki, P. and Falaras, P. (2009) Photo-Induced Effects on
Self-Organized TiO2 Nanotube Arrays: The Influence of Surface
Morphology. Nanotechnology, 20, 045603 (1-9). http://dx.doi.org/10.1088/0957-4484/20/4/045603 |
[5] | Mor,
G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005)
Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano
Letters, 5, 191-195. http://dx.doi.org/10.1021/nl048301k |
[6] | Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008) The Solar Hydrogen Generation by Water Photoelectrolysis. Springer, New York. |
[7] | Shankar,
K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K.
and Grimes, C.A. (2007) Highly-Ordered TiO2 Nanotube Arrays up to 220 μm
in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar
Cells. Nanotechnology, 18, 065707 (1-11). http://dx.doi.org/10.1088/0957-4484/18/6/065707 |
[8] | Mura,
F., Masci, A., Pasquali, M. and Pozio, A. (2010) Stable TiO2 Nanotube
Arrays with High UV Photoconversion Efficiency. Electrochimica Acta, 55,
2246-2251. http://dx.doi.org/10.1016/j.electacta.2009.11.060 |
[9] | Varghese,
O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A.
(2003) Extreme Changes in the Electrical Resistance of Titania Nanotubes
with Hydrogen Exposure. Advanced Materials, 15, 624-627. http://dx.doi.org/10.1002/adma.200304586 |
[10] | Varghese,
O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003) Hydrogen
Sensing Using Titania Nanotubes. Sens. Actuators B, 93, 338-344. http://dx.doi.org/10.1016/S0925-4005(03)00222-3 |
[11] | Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008) Free-Standing TiO2 Nanotube Arrays Made by Anodic Oxidation and Ultrasonic Splitting. Nanotechnology, 19, 365708, 5 p. eww150113lx |
[12] | Sennik,
E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010) Synthesis of
Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International
Journal of Hydrogen Energy, 35, 4420-4427. http://dx.doi.org/10.1016/j.ijhydene.2010.01.100 |
[13] | Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) High Efficiency Double Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO2 Nanotube Arrays. Applied Physics Letters, 91, 152111(pp3). http://dx.doi.org/10.1063/1.2799257 |
[14] | Mor,
G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A.,
Yoriya, S. and Grimes, C.A. (2010) High- Efficiency Förster Resonance
Energy Transfer in Solid-State Dye Sensitized Solar Cells. Nano Letters,
10, 2387-2394. http://dx.doi.org/10.1021/nl100415q |
[15] | Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H.M. (2010) The Use of Ti Meshes with Self-Organized TiO2 Nanotubes as Photoanodes of All-Ti Dye-Sensitized Solar Cells. Progress in Photovoltaics: Research and Applications, 18, 285-290. |
[16] | Alivov, Y. and Fan, Z.Y. (2010) Dye-Sensitized Solar Cells Using TiO2 Nanoparticles Transformed from Nanotube Arrays. Journal of Materials Science, 45, 2902-2906. http://dx.doi.org/10.1007/s10853-010-4281-2 |
[17] | Liu, Z. and Misra, M. (2010) Bifacial Dye-Sensitized Solar Cells Based on Vertically Oriented TiO2 Nanotube Arrays. Nanotechnology, 21, 125703, 4 p. |
[18] | Fang,
D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C. and Qin, D.Y.
(2008) Fabrication and Characterization of Highly Ordered Porous Anodic
Titania on Titanium Substrate. Journal of Inorganic Materials, 23,
647-651. http://dx.doi.org/10.3724/SP.J.1077.2008.00647 |
[19] | Oh,
S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005) Growth
of Nano-Scale Hydroxyapatite Using Chemically Treated Titanium Oxide
Nanotubes. Biomaterials, 26, 4938-4943. http://dx.doi.org/10.1016/j.biomaterials.2005.01.048 |
[20] | Oh,
S.H. and Jin, S. (2006) Titanium Oxide Nanotubes with Controlled
Morphology for Enhanced Bone Growth. Materials Science and Engineering:
C, 26, 1301-1306. http://dx.doi.org/10.1016/j.msec.2005.08.014 |
[21] | Oh,
H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008)
Surface Characteristics of Porous Anodic TiO2 Layer for Biomedical
Applications. Materials Chemistry and Physics, 109, 10-14. http://dx.doi.org/10.1016/j.matchemphys.2007.11.022 |
[22] | Das,
K., Bandyopadhyay, A. and Bose, S. (2008) Biocompatibility and in Situ
Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry.
Journal of the American Ceramic Society, 91, 2808-2814. http://dx.doi.org/10.1111/j.1551-2916.2008.02545.x |
[23] | Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Decreased Staphylococcus epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes. Biomaterials, 28, 4880- 4888. http://dx.doi.org/10.1016/j.biomaterials.2007.07.037 |
[24] | Popat,
K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007)
Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for
Medical Implants? Small, 3/11, 1878-1881. http://dx.doi.org/10.1002/smll.200700412 |
[25] | Peng,
L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and
Desai, T.A. (2009) Long-Term Small Molecule and Protein Elution from
TiO2 Nanotubes. Nano Letters, 9, 1932-1936. http://dx.doi.org/10.1021/nl9001052 |
[26] | Wang,
Y., Feng, C., Jin, Z., Zhang, J., Yang, J.J. and Zhang, S.L. (2006) A
Novel N-Doped TiO2 with High Visible Light Photocatalytic Activity.
Journal of Molecular Catalysis A: Chemical, 260, 1-3. http://dx.doi.org/10.1016/j.molcata.2006.06.044 |
[27] | Ghicov,
A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and
Schmuki, P. (2006) Ion Implantation and Annealing for an Efficient
N-Doping of TiO2 Nanotubes. Nano Letters, 6, 1080-1082. http://dx.doi.org/10.1021/nl0600979 |
[28] | Ghicov,
A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and
Schmuki, P. (2006) TiO2 Nanotube Layers: Dose Effects during Nitrogen
Doping by Ion Implantation. Chemical Physics Letters, 419, 426-429. http://dx.doi.org/10.1016/j.cplett.2005.11.102 |
[29] | Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006) An Electrochemical Strategy to Incorporate Nitrogen in Nanostructured TiO2 Thin Films: Modification of Bandgap and Photoelectrochemical Properties. Journal of Physics D, 39, 2361-2366. http://dx.doi.org/10.1088/0022-3727/39/11/008 |
[30] | Li,
Q. and Shang, J.K. (2009) Self-Organized Nitrogen and Fluorine Co-Doped
Titanium Oxide Nanotube Arrays with Enhanced Visible Light
Photocatalytic Performance. Environmental Science and Technology, 43,
8923-8929. http://dx.doi.org/10.1021/es902214s |
[31] | Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G., Jia, X. and Cao, G.X. (2009) Preparation and Characterization of Nitrogen-Doped Titania Nanotubes. Materials Letters, 63, 1598-1600. http://dx.doi.org/10.1016/j.matlet.2009.04.022 |
[32] | Xu,
J., Ao, Y.H., Chen, M. and Fu, D. (2010) Photoelectrochemical Property
and Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays. Applied
Surface Science, 256, 4397-4401. http://dx.doi.org/10.1016/j.apsusc.2010.02.037 |
[33] | Park, J.H., Kim, S. and Bard, A.J. (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28. http://dx.doi.org/10.1021/nl051807y |
[34] | Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006) Photo-Electrochemical Hydrogen Generation Using Band-Gap Modified Nanotubular Titanium Oxide in Solar Light. Journal of Power Sources, 161, 1450-1457. http://dx.doi.org/10.1016/j.jpowsour.2006.06.044 |
[35] | Wu,
G., Nishikawa, T., Ohtani, B. and Chen, A. (2007) Synthesis and
Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced
Visible Light Response. Chemistry of Materials, 19, 4530-4537. http://dx.doi.org/10.1021/cm071244m |
[36] | Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007) Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. The Journal of Physical Chemistry C, 111, 8677-8685. http://dx.doi.org/10.1021/jp071906v |
[37] | Hahn,
R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007) Carbon
Doping of Self-Organized TiO2 Nanotube Layers by Thermal Acetylene
Treatment. Nanotechnology, 18, 105604 (pp4). http://dx.doi.org/10.1088/0957-4484/18/10/105604 |
[38] | Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673. http://dx.doi.org/10.1016/j.seppur.2008.03.021 |
[39] | Su,
Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) Preparation and
Visible-Light-Driven Photoelectrocatalytic Properties of Boron-Doped
TiO2 Nanotubes. Materials Chemistry and Physics, 110, 239-246. http://dx.doi.org/10.1016/j.matchemphys.2008.01.036 |
[40] | Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F. and Sato, T. (2003) Preparation of Nitrogen-Doped Titania with High Visible Light Induced Photocatalytic Activity by Mechanochemical Reaction of Titania and Hexamethylenetetramine. Journal of Material Chemistry, 13, 2996-3001. http://dx.doi.org/10.1039/b309217h |
[41] | Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673. |
[42] | Vitiello,
R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P. and Schmuki,
P. (2006) N-Doping of Anodic TiO2 Nanotubes Using Heat Treatment in
Ammonia. Electrochemistry Communications, 8, 544-548. http://dx.doi.org/10.1016/j.elecom.2006.01.023 |
[43] | Macak,
M., Ghicov, A., Hahn, R., Tsuchiya, H. and Schmuki, P. (2006)
Photoelectrochemical Properties of N-Doped Self-Organized Titania
Nanotube Layers with Different Thicknesses. Journal of Materials
Research, 21, 2824-2828. http://dx.doi.org/10.1557/jmr.2006.0344 |
[44] | Lei,
L., Su, Y., Zhou, M., Zhang, X.W. and Chen, X.Q. (2007) Fabrication of
Multi-Non-Metal-Doped TiO2 Nanotubes by Anodization in Mixed Acid
Electrolyte. Materials Research Bulletin, 42, 2230-2236. http://dx.doi.org/10.1016/j.materresbull.2007.01.001 |
[45] | Tang, X.H. and Li, D.Y. (2008) Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. Journal of Physical Chemistry C, 112, 5405-5409. http://dx.doi.org/10.1021/jp710468a |
[46] | Yang, X., Chen, J., Gong, L., Wu, M. and Yu, J.C. (2009) Cross-Medal Arrays of Ta-Doped Rutile Titania. Journal of the American Chemical Society, 131, 12048-12049. http://dx.doi.org/10.1021/ja904337x |
[47] | Meng,
F. (2005) Influence of Sintering Temperature on Semi-Conductivity and
Nonlinear Electrical Properties of TiO2-Based Varistor Ceramics.
Materials Science and Engineering B, 117, 77-80. http://dx.doi.org/10.1016/j.mseb.2004.10.021 |
[48] | Feng,
X., Shankar, K., Paulose, M. and Grimes, C.A. (2009) Tantalum-Doped
Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with
High Open-Circuit Voltage. Angewandte Chemie, 121, 8239-8242. http://dx.doi.org/10.1002/ange.200903114 |
[49] | Obata,
K., Irie, H. and Hashimoto, K. (2007) Enhanced Photocatalytic
Activities of Ta, N Co-Doped TiO2 Thin Films under Visible Light.
Chemical Physics, 339, 124-132. http://dx.doi.org/10.1016/j.chemphys.2007.07.044 |
[50] | Mura,
F., Pozio, A., Masci, A. and Pasquali, M. (2009) Effect of a
Galvanostatic Treatment on the Preparation of Highly Ordered TiO2
Nanotubes. Electrochimica Acta, 54, 3794-3798. http://dx.doi.org/10.1016/j.electacta.2009.01.073 |
[51] | Dupuis,
G. and Menu, M. (2006) Quantitative Characterisation of Pigment
Mixtures Used in Art by Fibre-Optics Diffuse-Reflectance Spectroscopy.
Applied Physics A, 83, 469-474. http://dx.doi.org/10.1007/s00339-006-3522-3 |
[52] | Simmons, E.L. (1975) Diffuse Reflectance Spectroscopy: A Comparison of the Theories. Applied Optics, 14, 1380- 1386. http://dx.doi.org/10.1364/AO.14.001380 |
[53] | Yoldas, B.E. and Partlow, D.P. (1985) Formation of Broad Band Antireflective Coatings on Fused Silica for High Power Laser Applications. Thin Solid Films, 129, 1-14. http://dx.doi.org/10.1016/0040-6090(85)90089-6 |
[54] | Mor,
G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005) Transparent
Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin
Films. Advanced Functional Materials, 15, 1291-1296. http://dx.doi.org/10.1002/adfm.200500096 |
[55] | Burgeth, G. and Kisch, H. (2002) Photocatalytic and Photoelectrochemical Properties of Titania-Chloroplatinate (IV). Coordination Chemistry Reviews, 230, 41-47. http://dx.doi.org/10.1016/S0010-8545(02)00095-4 |
[56] | Sakthivel, S. and Kisch, H. (2003) Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42, 4908-4911. http://dx.doi.org/10.1002/anie.200351577 |
[57] | Lin, H., Huang, C.P., Li, W., Ni, C., Ismat Shah, S. and Tseng, Y. (2006) Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol. Applied Catalysis B: Environmental, 68, 1-11. http://dx.doi.org/10.1016/j.apcatb.2006.07.018 |
[58] | Wei,
W., Macak, J.M. and Schmuki, P. (2008) High Aspect Ratio Ordered
Nanoporous Ta2O5 Films by Anodization of Ta. Electrochemistry
Communications, 10, 428-432. http://dx.doi.org/10.1016/j.elecom.2008.01.004 |
[59] | Allam,
N.K., Feng, X.J. and Grimes, C.A. (2008) Self-Assembled Fabrication of
Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by
One-Step Tantalum Anodization. Chemistry of Materials, 20, 6477-6481. http://dx.doi.org/10.1021/cm801472y |
[60] | Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S. and Schmuki, P. (2007) TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Current Opinion in Solid State and Materials Science, 11, 3-18. http://dx.doi.org/10.1016/j.cossms.2007.08.004 |
[61] | Navale, S.C., Vadivel Murugan, A. and Ravi, V. (2007) Varistors Based on Ta-Doped TiO2. Ceramics International, 33, 301-303. http://dx.doi.org/10.1016/j.ceramint.2005.07.026 |
[62] | Thamaphat, K., Limsuwan, P. and Ngotawornchai, B. (2008) Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart Journal: Natural Science, 42, 357-361. http://kasetsartjnatsci.kasetsart.org/ |
[63] | Nashed, R., Szymanski, P., El-Sayed, M.A. and Allam, N.K. (2014) Self-Assembled Nanostructured Photoanodes with Staggered Bandgap for Efficient Solar Energy Conversion. American Chemical Society Nano, 8, 4915-4923. |
[64] | Oliva,
F.Y., Avalle, L.B., Santos, E. and Cámara, O.R. (2002)
Photoelectrochemical Characterization of Nanocrystalline TiO2 Films on
Titanium Substrates. Journal of Photochemistry and Photobiology A:
Chemistry, 146, 175-188. http://dx.doi.org/10.1016/S1010-6030(01)00614-1 |
[65] | Radecka, M., Rekas, M., Trenczek-Zajac, A. and Zakrzewska, K. (2008) Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO2 Photoanodes in Water Photolysis. Journal of Power Sources, 181, 46-55. http://dx.doi.org/10.1016/j.jpowsour.2007.10.082 |
[66] | van
de Krol, R., Goossens, A. and Schoonman, J. (1997) Mott-Schottky
Analysis of Nanometer-Scale Thin-Film Anatase TiO2. Journal of the
Electrochemical Society, 144, 1723-1727. http://dx.doi.org/10.1149/1.1837668 |
[67] | Bolts,
J.M. and Wrighton, M.S. (1976) Correlation of Photocurrent-Voltage
Curves with Flat-Band Potential for Stable Photoelectrodes for the
Photoelectrolysis of Water. The Journal of Physical Chemistry, 80,
2641-2645. http://dx.doi.org/10.1021/j100565a004 |
[68] | O’Hayre,
R., Nanu, M., Schoonman, J. and Goossens, A. (2007) Mott-Schottky and
Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air.
Journal of Physical Chemistry C, 111, 4809-4814. http://dx.doi.org/10.1021/jp068354l |
[69] | Bondarenko,
A.S. and Ragoisha, G.A. (2005) Variable Mott-Schottky Plots Acquisition
by Potentiodynamic Electrochemical Impedance Spectroscopy. Journal of
Solid State Electrochemistry, 9, 845-849. http://dx.doi.org/10.1007/s10008-005-0025-7 |
[70] | Scharnweber,
D., Beutner, R., Rössler, S. and Worch, H. (2002) Electrochemical
Behavior of Titanium-Based Materials—Are There Relations to
Biocompatibility? Journal of Materials Science: Materials in Medicine,
13, 1215-1220. http://dx.doi.org/10.1023/A:1021118811893 |
[71] | Jakob,
M., Levanon, H. and Kamat, P.V. (2003) Charge Distribution between
UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the
Fermi Level. Nano Letters, 3, 353-358. http://dx.doi.org/10.1021/nl0340071 eww150113lx |
评论
发表评论