Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53240#.VLh25MnQrzE
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53240#.VLh25MnQrzE
ABSTRACT
Wireless
technology for underwater communication possesses a wide range of
potential application, but it is still a relatively unexplored area in
many aspects concerning modems physical design. A step towards future
deployment of underwater networks is the reduction of power consumption.
Therefore, asynchronous wakeup systems need to be integrated within the
physical layer design while avoiding the use of additional transducers.
This paper offers a practical and generic solution to adapt data
reception and transmission together with asynchronous wakeup sub-systems
in acoustic underwater modem architectures using a low power and low
cost solution. The proposal has been implemented in a real prototype
with success.
KEYWORDS
Underwater Acoustic Sensor Networks, Electro-Acoustic Transducers, Asynchronous Wake-Up Systems, Underwater Wireless Communication
Cite this paper
References
Sánchez,
A. , Blanc, S. , Yuste, P. , Perles, A. and Serrano, J. (2015) An
Acoustic Modem Featuring a Multi-Receiver and Ultra-Low Power. Circuits and Systems, 6, 1-12. doi: 10.4236/cs.2015.61001.
[1] | Akyildiz,
I.F., Pompili, D. and Melodia, T. (2005) Underwater Acoustic Sensor
Networks: Research Challenges. Ad Hoc Networks, 3, 257-279. http://dx.doi.org/10.1016/j.adhoc.2005.01.004 |
[2] | Heidemann, J., Stojanovic, M. and Zorzi, M. (2012) Underwater Sensor Networks: Applications, Advances, and Challenges. Royal Society, 370, 158-175. |
[3] | Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P. and Ball, K. (2005) The WHOI Micro-Modem: An Acoustic Communications and Navigation System for Multiple Platforms. Proceedings of OCEANS 2005 MTS/IEEE, Washington, DC, 17-23 September 2005, 1086-1092. |
[4] | Parsons, G.S., Peng, S. and Dean, A.G. (2008) An Ultrasonic Communication System for Biotelemetry in Extremely Shallow Waters. Proceedings of the Third ACM International Workshop on Wireless Network Test Beds, Experimental Evaluation and Characterization—WuWNeT '08, ACM Press, New York, 99-102. |
[5] | Sanchez,
A., Blanc, S., Yuste, P., Perles, A. and Serrano, J.J. (2012) An
Ultra-Low Power and Flexible Acoustic Modem Design to Develop
Energy-Efficient Underwater Sensor Networks. Sensors, 12, 6837-6856. http://dx.doi.org/10.3390/s120606837 |
[6] | Wills, J., Ye, W. and Heidemann, J. (2006) Low-Power Acoustic Modem for Dense Underwater Sensor Networks. Proceedings of the 1st ACM International Workshop on Underwater Networks—WUWNet '06, ACM Press, New York, 79-85, 1161055. |
[7] | Harris, A.F., Stojanovic, M. and Zorzi, M. (2006) When Underwater Acoustic Nodes Should Sleep With One Eye Open. Proceedings of the 1st ACM International Workshop on Underwater Networks—WUWNet '06, ACM Press, New York, 105-108. |
[8] | Harris
III, A.F., Stojanovic, M. and Zorzi, M. (2009) Idle-Time Energy Savings
through Wake-Up Modes in Underwater Acoustic Networks. Ad Hoc Networks,
7, 770-777. http://dx.doi.org/10.1016/j.adhoc.2008.07.014 |
[9] | Sanchez, A., Blanc, S., Yuste, P. and Serrano, J. (2011) RFID Based Acoustic Wake-Up System for Underwater Sensor Networks. 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, 873-878. |
[10] | Schurgers,
C., Tsiatsis, V., Ganeriwal, S. and Srivastava, M. (2002) Topology
Management for Sensor Networks. Proceedings of the 3rd ACM International
Symposium on Mobile ad hoc Networking & Computing—MobiHoc '02, ACM
Press, New York, 135-145. http://dx.doi.org/10.1145/513800.513817 |
[11] | Lin, E.Y., Rabaey, J. and Wolisz, A. (2004) Power-Efficient Rendez-Vous Schemes for Dense Wireless Sensor Networks. 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), Vol. 7, 20-24 June 2004, 3769-3776. |
[12] | Benson, B., Chang, G., Manov, D., Graham, B. and Kastner, R. (2006) Design of a Low-Cost Acoustic Modem for Moored Oceanographic Applications. Proceedings of the 1st ACM International Workshop on Underwater Networks— WUWNet '06, ACM Press, New York, 71-78. |
[13] | Benson, B. (2010) Design of a Low-Cost Underwater Acoustic Modem for Short-Range Sensor Networking Applications. PhD Thesis, University of California, San Diego. |
[14] | Pozar, D. (2004) Microwave Engineering. 3rd Revised Edition, John Wiley & Sons, Hoboken. |
[15] | Vizmuller, P. (1995) RF Design Guide Systems, Circuits and Equations. Artech House, London. |
[16] | Wilkinson, E.J. (1960) An N-Way Hybrid Power Divider. IEEE Transactions on Microwave Theory Technology, Vol. 8, 116-118. http://dx.doi.org/10.1109/TMTT.1960.1124668 |
[17] | HUMMINBIRD. Fishfinder, Depth Finder, GPS Chartplotters, Side Imaging Sonar Technology and Marine Fish Finders. http://www.humminbird.com/ |
[18] | Sanchez, A., Blanc, S., Yuste, P. and Serrano, J.J. (2011) A Low Cost and High Efficient Acoustic Modem for Underwater Sensor Networks. OCEANS 2011 IEEE—Spain, IEEE, Santander, 1-10. |
[19] | Linear Technology. Home Page. http://www.linear.com eww150116lx |
评论
发表评论