跳至主要内容

A Comparative Study on the Structural and Vibrational Properties of Two Potential Antimicrobial and Anticancer Cyanopyridine Derivatives

Read  full  paper  at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52999#.VK8-6cnQrzE

ABSTRACT
2-Hydroxy-4,6-dimethylpyridine-3-carbonitrile and 2-chloro-4,6-dimethylpyridine-3-carbonitrile compounds have been studied from a theoretical point of view in order to know their structural and vibrational properties in gas and aqueous solution phases by means of Density Functional Theory (DFT) calculations. The stable structures in both media were optimized by using the hybrid B3LYP/6-31G* method and the solvent effects in aqueous solution were studied by using the integral equation formalism of the polarizable continuum model (IEFPCM) employing the selfconsistent reaction field (SCRF) method. Detailed vibrational analyses for both compounds in the two phases were performed combining the DFT calculations with Pulay’s Scaled Quantum Mechanics Force Field (SQMFF) methodology. The different interactions for both compounds were analyzed by means of the bond orders, atomic charges, solvation energies, dipole moments, molecular electrostatic potentials and force constants parameters. The nature of the interactions was studied by using different descriptors.
 
Cite this paper
Márquez, M. , Márquez, M. , Cataldo, P. and Brandán, S. (2015) A Comparative Study on the Structural and Vibrational Properties of Two Potential Antimicrobial and Anticancer Cyanopyridine Derivatives. Open Journal of Synthesis Theory and Applications, 4, 1-19. doi: 10.4236/ojsta.2015.41001.
 
References
[1]Márquez, M.B. and Brandán, S.A. (2014) A Structural and Vibrational Investigation on the Antiviral Deoxyribonucleoside Thymidine Agent in Gas and Aqueous Solution Phases. International Journal of Quantum Chemistry, 114, 209-221.
http://dx.doi.org/10.1002/qua.24545
 
[2]Waly, M.A., EL-Hawary, I.I., Hamama, W.S. and Zoorob, H.H. (2013) Synthesis and Antitumor Evaluation of Some New Fused and Binary Pyridines. Journal of Heterocyclic Chemistry, 50, E12-E17. http://dx.doi.org/10.1002/jhet.1020
 
[3]Hawas, U.W., Al-Omar, M.A., Amr, A.E. and Hammam, A.G. (2011) Anticancer Activity of Some New Synthesized Tetrahydroquinoline and Tetrahydrochromene Carbonitrile Derivatives. American Journal of Applied Sciences, 8, 945- 952. http://dx.doi.org/10.3844/ajassp.2011.945.952
 
[4]Amr, A.E., Abdel-Hafez, N.A., Mohamed, S.F. and Abdulla, M.M. (2009) Synthesis, Reactions, and Antiarrhythmic Activities of Some Novel Pyrimidines and Pyridines Fused with Thiophene Moiety. Turkish Journal of Chemistry, 33, 421-432.
 
[5]Abdel-Hafez, N.A., Mohamed, A.M., Amr, A.E. and Abdulla, M.M. (2009) Antiarrhythmic Activities of Some Newly Synthesized Tricyclic and Tetracyclic Thienopyridine Derivatives. Scientia Pharmaceutica, 77, 539-553.
http://dx.doi.org/10.3797/scipharm.0905-06
 
[6]Amr, A.E., Abdulla, M.M. (2006) Synthesis and Anti-Inflammatory Activities of New Cyanopyrane Derivatives Fused with Steroidal Nuclei. Archiv der Pharmazie, 339, 88-95.
http://dx.doi.org/10.1002/ardp.200500209
 
[7]Amr, A.E., Sayed, H.H. and Abdulla, M.M. (2005) Synthesis and Reactions of Some New Substituted Pyridine and Pyrimidine Derivatives as Analgesic, Anticonvulsant and Antiparkinsonian Agents. Archiv der Pharmazie, 338, 433- 440. http://dx.doi.org/10.1002/ardp.200500982
 
[8]Al-Omar, M.A. and Amr, A.E. (2010) Synthesis of Some New Pyridine-2,6-carboxamide-derived Schiff Bases as Potential Antimicrobial Agents. Molecules, 15, 4711-4721.
http://dx.doi.org/10.3390/molecules15074711
 
[9]Yamada, T., Takahashi, H. and Hatano, R. (1999) Nicotinoid Insecticidas and the Nicotine Acetylcholine Receptor. Yamamoto, I. and Casida, J.E., Eds., Springer-Verlag: Hong Kong, 149.
 
[10]Singh, T., Sharma, S., Srivastava, V.K. and Kumar, A. (2006) Synthesis and Biological Evaluation of Some Pyra- zolinylpyridines and Pyrazolylpyridines. Archiv der Pharmazie, 339, 24-31.
http://dx.doi.org/10.1002/ardp.200500117
 
[11]Metwally, M.A., Abdel-Galil, E., Amer, F.A. and Abdallah, A.M. (2012) New Thiazolidinones, Thiazolines and Thiopyrimidines from 3,5-Diphenylcyclohex-2-enone. American Journal of Organic Chemistry, 2, 28-34.
http://dx.doi.org/10.5923/j.ajoc.20120201.06
 
[12]Durham, E.W., Siegfried, B.D. and Scharf, M.E. (2002) In Vivo and in Vitro Metabolism of Fipronil by Larvae of the European Corn Borer Ostrinia nubilalis. Pest Management Science, 58, 799-804.
http://dx.doi.org/10.1002/ps.523
 
[13]Thakkar, S.A. (2010) Studies on Bioactive Heterocycles and Other Moieties. Ph.D. Thesis, Saurashtra University, Rajkot.
 
[14]Mefetah, H., Giorgi, M. and Brouant, P. (1997) 2-Anilino-4,6-dimethylpyridine-3-carbonitrile, an Intermediate in the Synthesis of 5-Aminobenzo[b][1,8]naphthyridines. Acta Crystallographica Section C, 53, 101-102.
http://dx.doi.org/10.1107/S0108270196005276
 
[15]Laing, M., Sparrow, N. and Sommerville, P. (1971) The Crystal Structure of 4-Cyanopyridine. Acta Crystallographica Section B, 27, 1986-1990. http://dx.doi.org/10.1107/S0567740871005211
 
[16]Wang, Y.C. (2012) 4-Cyano-Pyridinium Dihydrogen Phosphate-Isonicotinonitrile-Phospho-Ric Acid (1/1/1). Acta Crystallographica Section E, 68, o1693-o1694.
 
[17]Daran, J., Jeannin, Y. and Martin, L.M. (1979) 3-Cyanopyridinium Tetrachloroferrate(III)-3-Cyanopyridine. Acta Crystallographica Section B, 35, 3030-3032.
http://dx.doi.org/10.1107/S0567740879011249
 
[18]Fan, W.J., Zhang, R.Q. and Liu, S. (2007) Computation of Large Systems with an Economic Basis Set: Structures and Reactivity Indices of Nucleic Acid Base Pairs from Density Functional Theory. Journal of Computational Chemistry, 28, 967-974. http://dx.doi.org/10.1002/jcc.20670
 
[19]Chattaraj, P.K., Roy, D.R., Giri, S., Mukherjee, S., Subramanian, V., Parthasarathi, R., Bultinck, P. and Van Damme, S. (2007) An Atom Counting and Electrophilicity Based QSTR Approach. Journal of Chemical Sciences, 119, 475-488.
http://dx.doi.org/10.1007/s12039-007-0061-1
 
[20]Miertus, S., Scrocco, E. and Tomasi, J. (1981) Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chemical Physics, 55, 117-129.
http://dx.doi.org/10.1016/0301-0104(81)85090-2
 
[21]Rauhut, G. and Pulay, P. (1995) Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. Journal of Physical Chemistry, 99, 3093-3100.
http://dx.doi.org/10.1021/j100010a019
 
[22]Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
http://dx.doi.org/10.1021/ja00364a005
 
[23]Reed, A.E., Curtis, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor- Acceptor Viewpoint. Chemical Reviews, 88, 899-926.
http://dx.doi.org/10.1021/cr00088a005
 
[24]Glendening, E.D., Badenhoop, J.K., Reed, A.D., Carpenter, J.E. and Weinhold, F. (1996) NBO 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison.
 
[25]Bader, R.F.W. (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford.
 
[26]Biegler-Köning, F., Schönbohm, J. and Bayles, D. (2001) AIM2000. Journal of Computational Chemistry, 22, 545-559.
http://dx.doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
 
[27]Nielsen, A.B. and Holder, A.J. (2009) Gauss View 5.0, User’s Reference. GAUSSIAN Inc., Pittsburgh.
 
[28]Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. http://dx.doi.org/10.1063/1.464913
 
[29]Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
 
[30]Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. (2009) Gaussian 09, Revision A. 02. Gaussian, Inc., Pittsburgh.
 
[31]Marenich, A.V., Cramer, C.J. and Truhlar, D.G. (2009) Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 113, 6378-6396.
http://dx.doi.org/10.1021/jp810292n
 
[32]Roldán, M.L., Ledesma, A.E., Raschi, A.B., Castillo, M.V., Romano, E. and Brandán, S.A. (2013) A New Experimental and Theoretical Investigation on the Structures of Aminoethyl Phosphonic Acid in Aqueous Medium Based on the Vibrational Spectra and DFT Calculations. Journal of Molecular Structure, 1041, 73-81.
http://dx.doi.org/10.1016/j.molstruc.2013.02.032
 
[33]Guzzetti, K., Brizuela, A.B., Romano, E. and Brandán, S.A. (2013) Structural and Vibrational Study on Zwitterions of l-Threonine in Aqueous Phase Using the FT-Raman and SCRF Calculations. Journal of Molecular Structure, 1045, 171-179. http://dx.doi.org/10.1016/j.molstruc.2013.04.016
 
[34]Bichara, L.C. and Brandán, S.A. (2013) Hydration of Species Derived from Ascorbic Acid in Aqueous Solution. An Experimental and Theoretical Study by Using DFT Calculations. Journal of Molecular Liquids, 181, 34-43.
http://dx.doi.org/10.1016/j.molliq.2013.02.009
 
[35]Ugliengo, P. (1998) MOLDRAW Program. University of Torino, Dipartimento Chimica IFM, Torino.
 
[36]Besler, B.H., Merz Jr., K.M. and Kollman, P.A. (1990) Atomic Charges Derived from Semiempirical Methods. Journal of Computational Chemistry, 11, 431-439. http://dx.doi.org/10.1002/jcc.540110404
 
[37]Sundius, T. (2002) Scaling of ab initio Force Fields by MOLVIB. Vibrational Spectroscopy, 29, 89-95.
http://dx.doi.org/10.1016/S0924-2031(01)00189-8
 
[38]FTIR spectrum of 2-Hydroxy-4,6-dimethylpyridine-3-carbonitrile from Aldrich No 303A99F2d01.pdf.
 
[39]FTIR spectrum of 3-Pyridinecarbonitrile, 2-chloro-4,6-dimethyl-from LookChem No 14237-71-9.
 
[40]Contreras, C.D., Montejo, M., López González, J.J., Zinczuk, J. and Brandán, S.A. (2011) Structural and Vibrational Analyses of 2-(2-Benzofuranyl)-2-imidazoline. Journal of Raman Spectroscopy, 42, 108-116.
http://dx.doi.org/10.1002/jrs.2659
 
[41]Contreras, C.D., Ledesma, A.E., Zinczuk, J. and Brandán, S.A. (2011) Vibrational Study of Tolazoline Hydrochloride by Using FTIR-Raman and DFT Calculations. Spectrochimica Acta Part A, 79, 1710-1714.
http://dx.doi.org/10.1016/j.saa.2011.05.041
 
[42]Contreras, C.D., Montejo, M., López González, J.J., Zinczuk, J. and Brandán, S.A. (2011) Structural and Vibrational Analyses of 2-(-2-Benzofuranyl)-2-imidazoline. Journal of Raman Spectroscopy, 42, 108-116.
 
[43]Romano, E., Raschi, A.B., Benavente, A. and Brandán, S.A. (2011) Structural Analysis, Vibrational Spectra and Coordinated Normal of 2R-(-)-6-Hydroxytremetone. Spectrochimica Acta Part A, 84, 111-116.
http://dx.doi.org/10.1016/j.saa.2011.09.011
 
[44]Leyton, P., Brunet, J., Silva, V., Paipa, C., Castillo, M.V. and Brandán, S.A. (2012) An Experimental and Theoretical Study of l-Tryptophan in an Aqueous Solution, Combining Two-Layered ONIOM and SCRF Calculations. Spectrochimica Acta Part A, 88, 162-170. http://dx.doi.org/10.1016/j.saa.2011.12.023
 
[45]Lizarraga, E., Romano, E., Rudyk, R., Catalán, C.A.N. and Brandán, S.A. (2012) Structural Study, Coordinated Normal Analysis and Vibrational Spectra of 4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone. Spectrochimica Acta Part A, 97, 202-208.
http://dx.doi.org/10.1016/j.saa.2012.06.004
 
[46]Leyton, P., Paipa, C., Berrios, A., Zárate, A., Fuentes, S., Castillo, M.V. and Brandán, S.A. (2013) Structural Study and Characterization of the Dipeptide 2-[[5-Amino-5-oxo-2-(phenylmethoxycarbonylamino) Pentanoyl] Amino] Acetic Acid by Vibrational Spectroscopy and DFT Calculations. Journal of Molecular Structure, 1031, 110-118.
http://dx.doi.org/10.1016/j.molstruc.2012.07.042
 
[47]Piro, O.E., Echeverría, G.A., Lizarraga, E., Romano, E., Catalán, C.A.N. and Brandán, S.A. (2013) Molecular Structure of 4-hidroxy-3-(3-methyl-2-butenyl) Acetophenone, a Plant Antifungal, by X-Ray Diffraction, DFT Calculation, and NMR and FTIR Spectroscopy. Spectrochimica Acta Part A, 101, 196-203. http://dx.doi.org/10.1016/j.saa.2012.09.086
 
[48]Romano, E., Brizuela, A.B., Guzzetti, K. and Brandán, S.A. (2013) An Experimental and Theoretical Study on the Hydration in Aqueous Medium of the Antihypertensive Agent Tolazoline Hydrochloride. Journal of Molecular Structure, 1037, 393-401. http://dx.doi.org/10.1016/j.molstruc.2013.01.028
 
[49]Lizarraga, E., Romano, E., Raschi, A.B., Leyton, P., Paipa, C., Catalán, A.C.N. and Brandán, S.A. (2013) A Structural and Vibrational Study of Dehydrofukinone Combining FTIR, FTRaman, UV-Visible and NMR Spectroscopies with DFT Calculations. Journal of Molecular Structure, 1048, 331-338. http://dx.doi.org/10.1016/j.molstruc.2013.05.067                                                                                                        eww150109lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...