Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52402#.VJOW_cCAM4
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52402#.VJOW_cCAM4
Author(s)
The time dependence of probability and Shannon entropy
of a modified damped harmonic oscillator is studied by using single and double Gaussian
wave functions through the Feynman path method. We establish that the damped coefficient as well as the
system frequency and the distance separating two consecutive waves of the initial
double Gaussian function influences the coherence of the system and can be used
to control its decoherence.
KEYWORDS
Cite this paper
Pelap, F. , Fomethe, A. , Fotue, A. and Tabue, M.
(2014) Time Dependent Entropy and Decoherence in a Modified Quantum
Damped Harmonic Oscillator. Journal of Quantum Information Science, 4, 214-226. doi: 10.4236/jqis.2014.44020.
[1] | Isar, A. (2005) Decoherence in Open Quantum Systems. Romanian Journal of Physics, 50, 147-156. |
[2] | Walls, D.F. and Millburn, G.J. (1994) Quantum Optics. Springer, Heildelberg. |
[3] |
Scully, M.O. and Zubairy, M.S.
(1997) Quantum Optics. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511813993 |
[4] | Sargent III, M., Scully, M.O. and Lamb Jr., W.E. (1974) Laser Physics. Addison-Wesley, Reading. |
[5] | Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University, Cambridge, UK. |
[6] |
Karlsson, E.B. (1998) Coherence
and Decoherence of Positive Particle States in Solids. Physica Scripta,
76, 179. http://dx.doi.org/10.1238/Physica.Topical.076a00179 |
[7] |
Chatzidimitriou-Dreismann, C.A.,
Abdul-Redah, T. and Kolaric, B. (2001) Entanglement of Protons in
Organic Molecules: An Attosecond Neutron Scattering Study of C [Bond] H
Bond Breaking. Journal of the American Chemical Society, 123,
11945-11951. http://dx.doi.org/10.1021/ja004186d |
[8] |
Chatzidimitriou-Dreismann, C.A.,
Abdul Redah, T., Streffer, R.M. and Mayers, J. (1997) Anomalous Deep
Inelastic Neutron Scattering from Liquid H2O-D2O: Evidence of Nuclear
Quantum Entanglement. Physical Review Letters, 79, 2839-2842. http://dx.doi.org/10.1103/PhysRevLett.79.2839 |
[9] |
Krzywicki, A. (1993) Coherence
and Decoherence in Radiation off Colliding Heavy Ions. Physical Review
D, 48, 5190-5195. http://dx.doi.org/10.1103/PhysRevD.48.5190 |
[10] |
Zeh, H.D. (1986) Emergence of a
Classical Universe from Quantum Gravity and Cosmology. Physics Letters
A, 116, 9-12. http://dx.doi.org/10.1016/0375-9601(86)90346-4 |
[11] |
Zeh, H.D. (1988) Time in Quantum Gravity. Physics Letters A, 126, 311-317. http://dx.doi.org/10.1016/0375-9601(88)90842-0 |
[12] |
Zeh, H.D. (1992) The Physical Basis of the Direction of Time. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-02759-2 |
[13] |
Kiefer, C. (1987) Emergence of a
Classical Universe from Quantum Gravity and Cosmology. Classical and
Quantum Gravity, 4, 1369-1382. http://dx.doi.org/10.1088/0264-9381/4/5/031 |
[14] |
Halliwell, J. (1989) Decoherence
in Quantum Cosmology. Physical Review D, 39, 2912-2923. http://dx.doi.org/10.1103/PhysRevD.39.2912 |
[15] |
Barvinsky, A.O. and Kamenshchik,
A.Y. (1990) Preferred Basis in the Many-Worlds Interpretation of
Quantum Mechanics and Quantum Cosmology. Classical and Quantum Gravity,
7, 2285-2293. http://dx.doi.org/10.1088/0264-9381/7/12/010 |
[16] |
Barvinsky, A.O. and Kamenshchik,
A.Y. (1995) Preferred Basis in Quantum Theory and the Problem of
Classicalizationof the Quantum Universe. Physical Review D, 52, 743-757.
http://dx.doi.org/10.1103/PhysRevD.52.743 |
[17] | Brandenberger, R., Laflamme, R. and Mijic, M. (1990) Modern Physics Letters A, 5, 2311. |
[18] |
Paz, J.-P. and Sinha, S. (1991)
Decoherence and Back Reaction: The Origin of the Semiclassical Einstein
Equations. Physical Review D, 44, 1038-1049. http://dx.doi.org/10.1103/PhysRevD.44.1038 |
[19] |
Paz, J.-P. and Sinha, S. (1992)
Decoherence and Back Reaction in Quantum Cosmology: Multidimensional
Minisuperspace Examples. Physical Review D, 45, 2823-2842. http://dx.doi.org/10.1103/PhysRevD.45.2823 |
[20] |
Castagnino, M.A., Gangui, A.,
Mazzitelli, F.D. and Tkachev, I.I. (1993) Third Quantization,
Decoherence and the Interpretation of Quantum Gravity in
Mini-Super-Space. Classical and Quantum Gravity, 10, 2495-2504. http://dx.doi.org/10.1088/0264-9381/10/12/008 |
[21] |
Kefer, C. and Zeh, H.D. (1995)
Arrow of Time in a Recollapsing Quantum Universe. Physical Review D, 51,
4145-4153. http://dx.doi.org/10.1103/PhysRevD.51.4145 |
[22] |
Mensky, M.B. and Novikov, I.D.
(1996) Decoherence Caused by Topology in a Time-Machine Spacetime.
International Journal of Modern Physics D, 5, 1-27. http://dx.doi.org/10.1142/S0218271896000023 |
[23] |
Giulini, D., Joos, E., Kiefer,
C., Kupsch, J., Stamatescu, I.O. and Zeh, H.D. (1996) Decoherence and
the Appearance of a Classical World in Quantum Theory. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-03263-3 |
[24] | Paz, J.P. and Zurek, W.H. (2001) In Coherent Atomic Matter Waves. In: Kaiser, R., Westbrook, C. and David F., Eds., Les Houches Session LXXII, Springer, Berlin, 533-614. |
[25] |
Zurek, W.H. (2003) Decoherence,
Einselection, and the Quantum Origins of the Classical. Reviews of
Modern Physics, 75, 715-775. http://dx.doi.org/10.1103/RevModPhys.75.715 |
[26] |
Morikawa, M. (1990) Quantum
Decoherence and Classical Correlation in Quantum Mechanics. Physical
Review D, 42, 2929-2932. http://dx.doi.org/10.1103/PhysRevD.42.2929 |
[27] |
Habib, S. and Laflamme, R.
(1990) Wigner Function and Decoherence in Quantum Cosmology. Physical
Review D, 42, 4056-4065. http://dx.doi.org/10.1103/PhysRevD.42.4056 |
[28] |
Alicki, R. (2004) Pure
Decoherence in Quantum Systems. Open Systems & Information Dynamics
(OSID), 11, 53-61. http://dx.doi.org/10.1023/B:OPSY.0000024755.58888.ac |
[29] |
Joos, E., Zeh, H.D., Kiefer, C.,
Giulini, D., Kupsch, J. and Stamatescu, I.O. (2003) Decoherence and the
Appearance of a Classical World in Quantum Theory. Springer, Berlin. http://dx.doi.org/10.1007/978-3-662-05328-7 |
[30] |
Gamble, J.K. and Lindner, J.F.
(2009) Demystifying Decoherence and the Master Equation of Quantum
Brownian Motion. American Journal of Physics, 77, 244. http://dx.doi.org/10.1119/1.3043847 |
[31] |
Zuo, J. and O’Connell, R.F.
(2004) Effect of an External Field on Decoherence: Part II. Journal of
Modern Optics, 51, 821-832. http://dx.doi.org/10.1080/09500340408233599 |
[32] |
Ozcan, O., Akturk, E. and Sever,
R. (2008) Time Dependence of Joint Entropy of Oscillating Quantum
Systems. International Journal of Theoretical Physics, 47, 3207-3218. http://dx.doi.org/10.1007/s10773-008-9756-4 |
[33] |
Isar, A. (2007) Quantum
Decoherence of a Damped Harmonic Oscillator. Optics and Spectroscopy,
103, 252-257. http://dx.doi.org/10.1134/S0030400X07080140 |
[34] |
Lindblad, G. (1976) Brownian
Motion of a Quantum Harmonic Oscillator. Reports on Mathematical
Physics, 10, 393-406. http://dx.doi.org/10.1016/0034-4877(76)90029-X |
[35] |
Sandulescu, A. and Scutaru, H.
(1987) Open Quantum Systems and the Damping of Collective Models in Deep
Inelastic Collisions. Annals of Physics, 173, 277-317. http://dx.doi.org/10.1016/0003-4916(87)90162-X |
[36] |
Elran, Y. and Brumer, P. (2004)
Decoherence in an Inharmonic Oscillator Coupled to a Thermal
Environment: A Semi-Classical Forward-Backward Approach. The Journal of
Chemical Physics, 121, 2673. http://dx.doi.org/10.1063/1.1766009 |
[37] |
Chruscinski, D. and Jurkowski,
J. (2010) Memory in a Nonlocally Damped Oscillator. In: Accardi, L.,
Freudenberg, W. and Ohya, M., Eds., Quantum Bio-Informatics III, Tokyo
University of Science, Tokyo, 155-166. http://dx.doi.org/10.1142/9789814304061_0014 |
[38] |
Bateman, H. (1931) On
Dissipative Systems and Related Variational Principles. Physical Review,
38, 815-819. http://dx.doi.org/10.1103/PhysRev.38.815 |
[39] |
Caldirola, P. (1941) Quantum
Analysis of Modified Caldirola-Kanai Oscillator Model for
Electromagnetic Fieldsin Time-Varying. IL Nuovo Cimento, 18, 393-400. http://dx.doi.org/10.1007/BF02960144 |
[40] |
Feynman, R.P. (1948) Space-Time
Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern
Physics, 20, 367-387. http://dx.doi.org/10.1103/RevModPhys.20.367 |
[41] |
Fai, L.C., Fomethe, A., Mborong,
V.B., Fotue, A.J., Domngang, S., Issofa, N. and Tchoffo, M. (2008)
Polaron State Screening by Plasmons in a Spherical Nanocrystal. Journal
of Low Temperature Physics, 152, 71-87. http://dx.doi.org/10.1007/s10909-008-9803-9 |
[42] |
Um, C.I., Yeon, K.H. and George,
T.F. (2002) The Quantum Damped Harmonic Oscillator. Physics Reports,
362, 63-192. http://dx.doi.org/10.1016/S0370-1573(01)00077-1 |
[43] |
Um, C.I., Yeon, K.H. and Kahng,
W.H. (1987) The Quantum Damped Driven Harmonic Oscillator. Journal of
Physics A: Mathematical and General, 20, 611-626. http://dx.doi.org/10.1088/0305-4470/20/3/024 |
[44] | Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York. eww141219lx |
评论
发表评论