跳至主要内容

The Genesis of the Quantum Theory of the Chemical Bond

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52476#.VJoRLcCAM4

An historical overview is given of the relevant steps that allowed the genesis of the quantum theory of the chemical bond, starting from the appearance of the new quantum mechanics and following later developments till approximately 1931. General ideas and some important details are discussed concerning molecular spectroscopy, as well as quantum computations for simple molecular systems performed within perturbative and variational approaches, for which the Born- Oppenheimer method provided a quantitative theory accounting for rotational, vibrational and electronic states. The novel concepts introduced by the Heitler-London theory, complemented by those underlying the method of the molecular orbitals, are critically analyzed along with some of their relevant applications. Further improvements in the understanding of the nature of the chemical bond are also considered, including the ideas of one-electron and three-electron bonds introduced by Pauling, as well as the generalizations of the Heitler-London theory firstly performed by Majorana, which allowed the presence of ionic structures into homopolar compounds and provided the theoretical proof of the stability of the helium molecular ion. The study of intermolecular interactions, as developed by London, is finally examined.
Cite this paper
Esposito, S. and Naddeo, A. (2014) The Genesis of the Quantum Theory of the Chemical Bond. Advances in Historical Studies, 3, 229-257. doi: 10.4236/ahs.2014.35020.
 

[1] Alexandrow, W. (1926). The Hydrogen Molecular Ion and Undulation Mechanics. Annalen der Physik (Leipzig), 81, 603- 614.
[2] Birge, R. T. (1926). The Structure of Molecules. Nature, 117, 300-302.
http://dx.doi.org/10.1038/117300b0
[3] Birge, R. T., & Sponer, H. (1926). The Heat of Dissociation of Non-Polar Molecules. Physical Review, 28, 259-283. http://dx.doi.org/10.1103/PhysRev.28.259
[4] Born, M., & Heisenberg, W. (1924). Zur Quantentheorie der Molekeln. Annalen der Physik, 379, 1-31. http://dx.doi.org/10.1002/andp.19243790902
[5] Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457-484. http://dx.doi.org/10.1002/andp.19273892002
[6] Burrau, Ø. (1927). Berechnung des Energiewertes des Wasserstoffmolekel-Ions im Normalzustand. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser, 7, 1-18.
[7] Condon, E. U. (1926). A Theory of Intensity Distribution in Band Systems. Physical Review, 28, 1182-1201. http://dx.doi.org/10.1103/PhysRev.28.1182
[8] Condon, E. U. (1927a). Coupling of Electronic and Nuclear Motions in Diatomic Molecules. Proceedings of the National Academy of Sciences of the United States of America, 13, 462-466.
http://dx.doi.org/10.1073/pnas.13.6.462
[9] Condon, E. U. (1927b). Wave Mechanics and the Normal State of the Hydrogen Molecule. Proceedings of the National Academy of Sciences of the United States of America, 13, 466-470.
http://dx.doi.org/10.1073/pnas.13.6.466
[10] Curtis, W. E. (1928). New Regularities in the Band Spectrum of Helium. Nature, 121, 907-908.
http://dx.doi.org/10.1038/121907c0
[11] Curtis, W. E., & Harvey, A. (1929). The Structure of the Band Spectrum of Helium VI. Proceedings of the Royal Society A, 125, 484-506. http://dx.doi.org/10.1098/rspa.1929.0180
[12] Dieke, G. H. (1929). Properties of the Terms of the Helium Molecule. Nature, 123, 716-717.
http://dx.doi.org/10.1038/123716b0
[13] Eisenschitz, R., & London, F. (1930). Uber das Verhaltnis der van der Waalsschen Krafte zu den homopolaren Bindungskraften. Zeitschrift für Physik, 60, 491-527. http://dx.doi.org/10.1007/BF01341258
[14] Esposito, S., & Naddeo, A. (2012). Majorana Solutions to the Two-Electron Problem. Foundations of Physics, 42, 1586- 1608. http://dx.doi.org/10.1007/s10701-012-9685-1
[15] Esposito, S., & Naddeo, A. (2013). Majorana, Pauling and the Quantum Theory of the Chemical Bond. arXiv:1306.6153[physics.hist-ph]
[16] Finkelstein, B. N., & Horowitz, G. E. (1928). Uber die Energie des He-Atoms und des positiven H2-Ions im Normalzustande. Zeitschrift für Physik, 48, 118-122. http://dx.doi.org/10.1007/BF01351582
[17] Franck, J. (1925). Elementary Processes of Photochemical Reactions. Transactions of the Faraday Society, 21, 536-542. http://dx.doi.org/10.1039/tf9262100536
[18] Frankland, E. (1866). Contributions to the Notation of Organic and Inorganic Compounds. Journal of the Chemical Society, 19, 372-395. http://dx.doi.org/10.1039/js8661900372
[19] Fues, E. (1926a). Das Eigenschwingungsspektrum zweiatomiger Molekule in der Undulationsmechanik. Annalen der Physik, 385, 367-396. http://dx.doi.org/10.1002/andp.19263851204
[20] Fues, E. (1926b). Zur Intensitat der Bandenlinien und des Affinitatsspektrums zweiatomiger Molekule. Annalen der Physik, 386, 281-313. http://dx.doi.org/10.1002/andp.19263861905
[21] Fues, E. (1927). Lebensdauern aus Resonanzerscheinungen. Zeitschrift für Physik, 43, 726-740. http://dx.doi.org/10.1007/BF01397333
[22] Gentile, G. (1930). Wechselwirkung zwischen einem H- und einem He-Atom und zwischen zwei He-Atomen. Zeitschrift für Physik, 63, 795-802. http://dx.doi.org/10.1007/BF01339276
[23] Guillemin, V., & Zener, C. (1928). Hydrogen Ion Wave Function. Proceedings of the National Academy of Sciences of the United States of America, 15, 314-318. http://dx.doi.org/10.1073/pnas.15.4.314
[24] Gurney, R. W., & Condon, E. U. (1928). Quantum Mechanics and Radioactive Disintegration. Nature, 122, 439-440. http://dx.doi.org/10.1038/122439a0
[25] Gurney, R. W., & Condon, E. U. (1929). Quantum Mechanics and Radioactive Disintegration. Physical Review, 33, 127-140. http://dx.doi.org/10.1103/PhysRev.33.127
[26] Heisenberg, W. (1926a). Mehrkorperprobleme und Resonanz in der Quantenmechanik I. Zeitschrift für Physik, 38, 411-426. http://dx.doi.org/10.1007/BF01397160
[27] Heisenberg, W. (1926b). über die Spektra von Atomsystemen mit zwei Elektronen. Zeitschrift für Physik, 39, 499-518. http://dx.doi.org/10.1007/BF01322090
[28] Heisenberg, W. (1927). Mehrkorperprobleme und Resonanz in der Quantenmechanik II. Zeitschrift für Physik, 41, 239-267. http://dx.doi.org/10.1007/BF01391241
[29] Heitler, W. (1928a). Störungsenergie und Austausch beim Mehrkörperproblem. Zeitschrift für Physik, 46, 47-72. http://dx.doi.org/10.1007/BF02055757
[30] Heitler, W. (1928b). Zur Gruppentheorie der homöopolaren chemischen Bindung. Zeitschrift für Physik, 47, 835-858. http://dx.doi.org/10.1007/BF01328643
[31] Heitler, W. (1928c). Zur Gruppentheorie der Wechselwirkung von Atomen. Zeitschrift für Physik, 51, 805-816. http://dx.doi.org/10.1007/BF01400241
[32] Heitler, W. (1930). Der gegenwartige Stand der quantenmechanischen Theorie der homopolaren Bindung. Physikaliske Zeitschrift, 5, 185-204.
[33] Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455-472. http://dx.doi.org/10.1007/BF01397394
[34] Henri, V., & Treves, M. (1924). Absorption Spectrum and Constitution of Sulfur Vapor. Predissociation of Molecules. Nature, 114, 894-895. http://dx.doi.org/10.1038/114894a0
[35] Henri, V., & Wurmser, R. (1927). Le mécanisme élémentaire des actions photochimiques. Journal de Physique et le Radium, 8, 289-310. http://dx.doi.org/10.1051/jphysrad:0192700807028900
[36] Herzberg, G. (1928). über die Struktur der negativen Stickstoffbanden. Annalen der Physik, 391, 189-213. http://dx.doi.org/10.1002/andp.19283911002
[37] Herzberg, G. (1929). Zum Aufbau der zweiatomigen Moleküle. Zeitschrift für Physik, 57, 601-630.
http://dx.doi.org/10.1007/BF01343078
[38] Hill, E., & van Vleck, J. H. (1928). On the Quantum Mechanics of the Rotational Distortion of Multiplets in Molecular Spectra. Physical Review, 32, 250-272. http://dx.doi.org/10.1103/PhysRev.32.250
[39] Huckel, E. (1930). Zur Quantentheorie der Doppelbindung. Zeitschrift für Physik, 60, 423-456.
http://dx.doi.org/10.1007/BF01341254
[40] Hulthen, E. (1925). Untersuchung über das Bandenspektrum des Quecksilbers. Zeitschrift für Physik, 32, 32-55. http://dx.doi.org/10.1007/BF01331647
[41] Hulthen, E. (1927). über nicht kombinierende Teilsysteme in den Banden-Spektren. Zeitschrift für Physik, 46, 349-353. http://dx.doi.org/10.1007/BF01390559
[42] Hulthen, E. (1928). Neuere Untersuchungen iiber das Bandenspektrum des Quecksilberhydrids. Zeitschrift für Physik, 50, 319-335. http://dx.doi.org/10.1007/BF01347511
[43] Hund, F. (1926). Zur Deutung einiger Erscheinungen in den Molekelspektren. Zeitschrift für Physik, 36, 657-674. http://dx.doi.org/10.1007/BF01400155
[44] Hund, F. (1927a). Zur Deutung der Molekelspektren I. Zeitschrift für Physik, 40, 742-764.
http://dx.doi.org/10.1007/BF01400234
[45] Hund, F. (1927b). Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln in der Quantenmechanik. Zeitschrift für Physik, 43, 788-804. http://dx.doi.org/10.1007/BF01397248
[46] Hund, F. (1928). Zur Deutung der Molekelspektren IV. Zeitschrift für Physik, 51, 759-795.
http://dx.doi.org/10.1007/BF01400239
[47] Hund, F. (1930). Zur Deutung der Molekelspektren V. Zeitschrift für Physik, 63, 719-751.
http://dx.doi.org/10.1007/BF01339271
[48] Hylleraas, E. A. (1931). über die Elektronenterme des Wasserstoffmoleküls. Zeitschrift für Physik, 71, 739-763. http://dx.doi.org/10.1007/BF01344443
[49] Kellner, G. W. (1927). Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie. Zeitschrift für Physik, 44, 91-109. http://dx.doi.org/10.1007/BF01391720
[50] Kramers, H. A. (1923). über die Quantelung rotierender Moleküle. Zeitschrift für Physik, 13, 343-350. http://dx.doi.org/10.1007/BF01328225
[51] Kramers, H. A. (1929a). Zur Struktur der Multiplett-S-Zustände in zweiatomigen Molekülen I. Zeitschrift für Physik, 53, 422-428. http://dx.doi.org/10.1007/BF01347762
[52] Kramers, H. A. (1929b). Zur Struktur der Multiplett-S-Zustände in zweiatomigen Molekülen II. Zeitschrift für Physik, 53, 429-438. http://dx.doi.org/10.1007/BF01347763
[53] Kramers, H. A., & Pauli, W. (1923). Zur Theorie der Bandenspektren. Zeitschrift für Physik, 13, 351-367. http://dx.doi.org/10.1007/BF01328226
[54] Kratzer, A. (1920). Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik, 3, 289-307. http://dx.doi.org/10.1007/BF01327754
[55] Kratzer, A. (1925). Die Gesetzmassigkeiten in den Bandenspektren. Encyklopadie der Mathematischen Wissenschaften, Band V, 3, 821-859.
[56] Kronig, R. de L. (1928). Zur Deutung der Bandenspektren. Zeitschrift für Physik, 46, 814-825.
http://dx.doi.org/10.1007/BF01391018
[57] Kronig, R. de L. (1930). über den spontanen Zerfall zweiatomiger Moleküle. Zeitschrift für Physik, 62, 300-310. http://dx.doi.org/10.1007/BF01336694
[58] Lennard-Jones, J. E. (1929). The Electronic Structure of Some Diatomic Molecules. Transactions of the Faraday Society, 25, 668-686. http://dx.doi.org/10.1039/tf9292500668
[59] Lewis, G. N. (1916). The Atom and the Molecule. Journal of the American Chemical Society, 38, 762-785. http://dx.doi.org/10.1021/ja02261a002
[60] London, F. (1928a). Zur Quantentheorie der homoopolaren Valenzzahlen. Zeitschrift für Physik, 46, 455-477. http://dx.doi.org/10.1007/BF01390729
[61] London, F. (1928b). Zur Quantentheorie der homoopolaren Valenzchemie. Zeitschrift für Physik, 50, 24-51. http://dx.doi.org/10.1007/BF01328590
[62] London, F. (1930a). Zur Theorie und Systematik der Molekularkrafte. Zeitschrift für Physik, 63, 245-279. http://dx.doi.org/10.1007/BF01421741
[63] London, F. (1930b). über einige Eigenschaften und Anwendungen der Molekularkräfte. Zeitschrift fur Physikalische Chemie B, 11, 222-251.
[64] Majorana, E. (1931a). Reazione Pseudopolare tra Atomi di Idrogeno. Rendiconti Accademia dei Lincei, 13, 58-61. Re- produced and Translated (2006) In G. F. Bassani (Ed.), Ettore Majorana: Scientific Papers (SIF, Bologna) (pp. 77-88). Berlin: Springer.
[65] Majorana, E. (1931b). Sulla Formazione dello Ione Molecolare di Elio. Il Nuovo Cimento, 8, 22-28. Reproduced and Translated (2006) In G. F. Bassani (Ed.), Ettore Majorana: Scientific Papers (SIF, Bologna) (pp. 39-57). Berlin: Springer.
[66] Mecke, R. (1924). Zur Systematik der Bandenspektra. Zeitschrift für Physik, 28, 261-277.
http://dx.doi.org/10.1007/BF01327183
[67] Mecke, R. (1925a). Zum Nachweis des Verschiebungssatzes bei Bandenspektra. Naturwissenschaften, 13, 698-699. http://dx.doi.org/10.1007/BF01558845
[68] Mecke, R. (1925b). Zum Wesen der Dublettstruktur einer Klasse von Bandenspektren. Naturwissenschaften, 13, 755-756.
http://dx.doi.org/10.1007/BF01559002
[69] Mehra, J., & Rechenberg, H. (1982). The Historical Development of Quantum Theory. 6 Volumes, New York: Springer. http://dx.doi.org/10.1007/978-1-4612-5783-7
[70] Morse, P. M. (1929). Diatomic Molecules According to the Wave Mechanics II. Physical Review, 34, 57-64. http://dx.doi.org/10.1103/PhysRev.34.57
[71] Morse, P. M., & Stueckelberg, E. C. G. (1929). Diatomic Molecules According to the Wave Mechanics I. Physical Review, 33, 932-947. http://dx.doi.org/10.1103/PhysRev.33.932
[72] Mulliken, R. S. (1925). On a Class of One-Valence-Electron Emitters of Band Spectra. Physical Review, 26, 561-572. http://dx.doi.org/10.1103/PhysRev.26.561
[73] Mulliken, R. S. (1928a). The Assignment of Quantum Numbers for Electrons in Molecules I. Physical Review, 32, 186-222. http://dx.doi.org/10.1103/PhysRev.32.186
[74] Mulliken, R. S. (1928b). The Assignment of Quantum Numbers for Electrons in Molecules II. Physical Review, 32, 761-782. http://dx.doi.org/10.1103/PhysRev.32.761
[75] Mulliken, R. S. (1928c). Interpretation of the Atmospheric Absorption Bands of Oxygen. Physical Review, 32, 880-887. http://dx.doi.org/10.1103/PhysRev.32.880
[76] Mulliken, R. S. (1929). The Assignment of Quantum Numbers for Electrons in Molecules III. Physical Review, 33, 730-747.
http://dx.doi.org/10.1103/PhysRev.33.730
[77] Mulliken, R. S. (1932a). The Interpretation of Band Spectra III. Reviews of Modern Physics, 4, 1-86.
http://dx.doi.org/10.1103/RevModPhys.4.1
[78] Mulliken, R. S. (1932b). Electronic Structures of Polyatomic Molecules and Valence II. Physical Review, 41, 49-71. http://dx.doi.org/10.1103/PhysRev.41.49
[79] Oppenheimer, J. R. (1927). Zur Quantentheorie kontinuierlicher Spektren. Zeitschrift für Physik, 41, 268-293. http://dx.doi.org/10.1007/BF01391242
[80] Pauli, W. (1925). über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik, 31, 765-783. http://dx.doi.org/10.1007/BF02980631
[81] Pauling, L. (1928). The Application of the Quantum Mechanics to the Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and to Related Problems. Chemical Reviews, 5, 173-213.
http://dx.doi.org/10.1021/cr60018a003
[82] Pauling, L. (1931a). The Nature of the Chemical Bond. Journal of the American Chemical Society, 53, 1367-1400. http://dx.doi.org/10.1021/ja01355a027
[83] Pauling, L. (1931b). The Nature of the Chemical Bond II. Journal of the American Chemical Society, 53, 3225-3237. http://dx.doi.org/10.1021/ja01360a004
[84] Pauling, L. (1933). The Normal State of the Helium Molecule-Ions He2+ and He2++. Journal of Chemical Physics, 1, 56-59. http://dx.doi.org/10.1063/1.1749219
[85] Pauling, L., & Wilson, E. B. (1935). Introduction to Quantum Mechanics with Applications to Chemistry. New York: McGraw-Hill.
[86] Slater, J. C. (1931a). Directed Valence in Polyatomic Molecules. Physical Review, 37, 481-489.
http://dx.doi.org/10.1103/PhysRev.37.481
[87] Slater, J. C. (1931b). Molecular Energy Levels and Valence Bonds. Physical Review, 38, 1109-1144.
http://dx.doi.org/10.1103/PhysRev.38.1109
[88] Sugiura, Y. (1927). über die Eigenschaften des Wasserstoffmolekuls im Grundzustande. Zeitschrift für Physik, 45, 484-492. http://dx.doi.org/10.1007/BF01329207
[89] Teller, E. (1930). über das Wasserstoffmolekulion. Zeitschrift für Physik, 61, 458-480.
http://dx.doi.org/10.1007/BF01330302
[90] Unsöld, A. (1927). Quantentheorie des Wasserstoffmoleküls und der Born-Landéschen Abstoβung
skräfte. Zeitschrift für Physik, 43, 563-574. http://dx.doi.org/10.1007/BF01397633
[91] van Vleck, J. H. (1929). The New Quantum Mechanics. Chemical Reviews, 5, 467-507.
http://dx.doi.org/10.1021/cr60020a006
[92] van Vleck, J. H., & Sherman, A. (1935). The Quantum Theory of Valence. Reviews of Modern Physics, 7, 167-228. http://dx.doi.org/10.1103/RevModPhys.7.167
[93] Wang, S. C. (1928a). The Problem of the Normal Hydrogen Molecule in the New Quantum Mechanics. Physical Review, 31, 579-586. http://dx.doi.org/10.1103/PhysRev.31.579
[94] Weizel, W. (1928a). über das Bandenspektrum des Heliums. Zeitschrift für Physik, 51, 328-340.
http://dx.doi.org/10.1007/BF01338315
[95] Weizel, W. (1928b). Entkopplung des Elektronenbahndrehimpulses von der Molekülachse durch die Rotation bei He2. Zeitschrift für Physik, 52, 175-196. http://dx.doi.org/10.1007/BF01342394
[96] Weizel, W. (1929a). Analyse des Bandenspektrums des Heliums. Zeitschrift für Physik, 54, 321-340. http://dx.doi.org/10.1007/BF01375455
[97] Weizel, W. (1929b). Aufbau der Molekulzustande aus Atomzustanden und Dissoziation in Diese. Zeitschrift für Physik, 59, 320-332. http://dx.doi.org/10.1007/BF01339907
[98] Weizel, W. (1930). Molekülzustände des Wasserstoffs mit zwei angeregten Elektronen. Zeitschrift für Physik, 65, 456-463. http://dx.doi.org/10.1007/BF01397043
[99] Wentzel, G. (1927). über strahlungslose Quantensprünge. Zeitschrift für Physik, 43, 524-530.
http://dx.doi.org/10.1007/BF01397631
[100] Wigner, E., & Witmer, E. E. (1928). Uber die Struktur der zweiatomigen Molekelspektren nach der Quantentnechanik. Zeitschrift für Physik, 51, 859-886. http://dx.doi.org/10.1007/BF01400247            eww141224lx
[101] Wilson, A. H. (1928). The Ionised Hydrogen Molecule. Proceedings of Royal Society A, 118, 635-647. http://dx.doi.org/10.1098/rspa.1928.0073

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...