跳至主要内容

Expected Future Precipitation in Central Iraq Using LARS-WG Stochastic Weather Generator

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52327#.VJDbxMnQrzE

The Middle East (ME) is characterized by its water shortage problem. This region with its arid climate is expected to be the most vulnerable in the world to the potential impacts of climate change. Iraq (located in ME) is seriously experiencing water shortage problem. To overcome this problem rain water harvesting can be used. In this study the applicability of the long-term weather generator model in downscaling daily precipitation Central Iraq is used to project future changes of precipitation based on scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results indicated that December-February and September-November periods, based on the ensemble mean of seven GCMs, showed an increasing trend in the periods considered; however, a decreasing trend can be found in March, April, and May in the future.
Cite this paper
Osman, Y. , Al-Ansari, N. , Abdellatif, M. , Aljawad, S. and Knutsson, S. (2014) Expected Future Precipitation in Central Iraq Using LARS-WG Stochastic Weather Generator. Engineering, 6, 948-959. doi: 10.4236/eng.2014.613086
 

[1] Nimah, M.N. (2008) Water Resources (2008) Report of the Arab Forum for Environment and Development. In: Tolba M.K. and Saab, N.W., Eds., Arab Environment and Future Challenges, Chapter 5, Arab Forum for Environment and Development, Cairo, 63-74.
[2] Al-Ansari, N.A. (2013) Management of Water Resources in Iraq: Perspectives and Prognoses. Engineering, 5, 667-668.
http://dx.doi.org/10.4236/eng.2013.58080
[3] Al-Ansari, N.A., Ali, A. and Knutsson, S. (2014) Present Conditions and Future Challenges of Water Resources Problems in Iraq. Journal of Water Resource and Protection, 6, 1066-1098.
http://dx.doi.org/10.4236/jwarp.2014.612102
[4] UN (2010) Water Resources Management White Paper, United Nations Assistance Mission for Iraq, United Nations Country Team in Iraq. 20 p.
http://iq.one.un.org/documents/100/white%20paper-eng_Small.pdf
[5] Al-Ansari, N.A., Knutsson, S. and Ali, A. (2012) Restoring the Garden of Eden, Iraq. Journal of Earth Sciences and Geotechnical Engineering, 2, 53-88.
[6] Al-Ansari, N.A., Ezz-Aldeen, M., Knutsson, S. and Zakaria, S. (2013) Water Harvesting and Reservoir Optimization in Selected Areas of South Sinjar Mountain, Iraq. Journal of Hydrologic Engineering, 18, 1607-1616.
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000712
[7] Al-Ansari, N.A., Zakaria, S., Mustafa, Y.T., Ahmad, P., Ghafour, B. and Knutsson, S. (2013) Development of Water Resources in Koya City, Iraq. 1st International Symposium on Urban Development of Koya, Koya City, 16-17 December 2013, 91-98.
http://dx.doi.org/10.2495/ISUD130111
[8] Zakaria, S. (2014) Rainwater Harvesting (RWH) North of Iraq. Ph.D. Thesis, Lulea University of Technology, Lulea.
[9] Zakaria, S., Al-Ansari, N., Mustafa, Y., Alshibli, M. and Knutsson, S. (2013) Macro Rain Water Harvesting Network to Estimate Annual Runoff at Koysinjaq (Koya) District, Kurdistan Region of Iraq. Engineering, 5, 956-966.
http://dx.doi.org/10.4236/eng.2013.512117
[10] Zakaria, S., Al-Ansari, N.A., Mustafa, Y., Mohammed, D.A., Knutsson, S., Ahmed, P. and Ghafour, B. (2013) Rainwater Harvesting at Koysinjaq (Koya), Kurdistan Region, Iraq. Journal of Earth Sciences and Geotechnical Engineering, 3, 25-46.
[11] Zakaria, S., Al-Ansari, N.A. and Knutsson, S. (2013) Historical and Future Climatic Change Scenarios for Temperature and Rainfall for Iraq. Journal of Civil Engineering and Architecture, 7, 1574-1594.
[12] Zakaria, S., Al-Ansari, N. and Knutsson, S. (2013) Wheat Yield Scenarios for Rainwater Harvesting at Northern Sinjar Mountain, Iraq. Natural Science, 5, 1057-1068.
http://dx.doi.org/10.4236/ns.2013.510130
[13] Wilby, R.L., Dawson, C.W. and Barrow, E.M. (2002) SDSM—A Decision Support Tool for the Assessment of Regional Climate Change Impacts. Environmental Modelling & Software, 17, 145-157.
http://dx.doi.org/10.1016/S1364-8152(01)00060-3
[14] Dibike, Y.B. and Coulibaly, P. (2005) Hydrologic Impact of Climate Change in the Saguenay Watershed: Comparison of Downscaling Methods and Hydrologic Models. Journal of Hydrology, 307, 145-163.
http://dx.doi.org/10.1016/j.jhydrol.2004.10.012
[15] Kilsby, C.G., Jones, P.D., Burton, A., Ford, A.C., Fowler, H.J., Harpham, C., James, P., Smith, A. and Wilby, R.L. (2007) A Daily Weather Generator for Use in Climate Change Studies. Environmental Modelling and Software, 22, 1705-1719.
http://dx.doi.org/10.1016/j.envsoft.2007.02.005
[16] Wilks, D.S. and Wilby, R.L. (1999) The Weather Generation Game: A Review of Stochastic Weather Models. Progress in Physical Geography, 23, 329-357.
http://dx.doi.org/10.1177/030913339902300302
[17] Racsko, P., Szeidl, L. and Semenov, M. (1991) A Serial Ap-proach to Local Stochastic Weather Models. Ecological Modelling, 57, 27-41.
http://dx.doi.org/10.1016/0304-3800(91)90053-4
[18] Bruhn, J.A., Fry, W.E. and Fick, G.W. (1980) Simulation of Daily Weather Data Using Theoretical Probability Distributions. Journal of Applied Meteorology, 19, 1029-1036.
http://dx.doi.org/10.1175/1520-0450(1980)019<1029:SODWDU>2.0.CO;2
[19] Bruhn, J.A. (1980) A Stochastic Model for the Simulation of Daily Weather. Protection Ecology, 2, 199-208.
[20] Nicks, A.D. and Harp, J.F. (1980) Stochastic Generation of Temperature and Solar Radiation Data. Journal of Hydrology, 48, 1-17.
http://dx.doi.org/10.1016/0022-1694(80)90062-1
[21] Richardson, C.W. (1981) Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation. Water Resources Research, 17, 182-190.
http://dx.doi.org/10.1029/WR017i001p00182
[22] Richardson, C.W. and Wright, D.A. (1984) WGEN: A Model for Generating Daily Weather Variables. US Department of Agriculture, Agricultural Research Service, ARS-8, United States Department of Agriculture, Agricultural Research Services, Washington DC, 83 p.
[23] Schoof, J.T., Arguez, A., Brolley, J. and O’Brien, J.J. (2005) A New Weather Generator Based on Spectral Properties of Surface Air Temperatures. Agricultural and Forest Meteorology, 135, 241-251.
http://dx.doi.org/10.1016/j.agrformet.2005.12.004
[24] Riha, S.J., Wilks, D.S. and Simoens, P. (1996) Impact of Temperature and Precipitation Variability on Crop Model Predictions. Climatic Change, 32, 293-311.
http://dx.doi.org/10.1007/BF00142466
[25] Hartkamp, A.D., White, J.W. and Hoogentoom, G. (2003) Comparison of Three Weather Generators for Crop Modelling: A Case Study for Subtropical Environments. Agricultural Systems, 76, 539-560.
http://dx.doi.org/10.1016/S0308-521X(01)00108-1
[26] Bannayan, M. and Hoogenboom, G. (2008) Weather Analogue: A Tool for Real-Time Prediction of Daily Weather Data Realizations Based on a Modified k-Nearest Neighbor Approach. Environmental Modelling & Software, 23, 703-713.
http://dx.doi.org/10.1016/j.envsoft.2007.09.011
[27] Semenov, M.A. (2006) Using Weather Generators in Crop Modelling. Acta Horticulturae, 707, 93-100.
[28] Wilks, D.S. (1992) Adapting Stochastic Weather Generation Algorithms for Climate Changes Studies. Climatic Change, 22, 67-84.
http://dx.doi.org/10.1007/BF00143344
[29] Bardossy, A. (1998) Generating Precipitation Time Series Using Simulated Annealing. Water Resources Research, 34, 1737-1744.
[30] Semenov, M.A. and Barrow, E.M. (1997) Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios. Climatic Change, 35, 397-414.
[31] Semenov, M.A., Brooks, R.J., Barrow, E.M. and Richardson, C.W. (1998) Comparison of the WGEN and LARS-WG Stochastic Weather Generators for Diverse Climates. Climate Research, 10, 95-107.
http://dx.doi.org/10.3354/cr010095
[32] Semenov, M.A. (2008) Simulation of Extreme Weather Events by a Stochastic Weather Generator. Climate Research, 35, 203-212.
http://dx.doi.org/10.3354/cr00731
[33] IPCC (2007) Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Cambridge University Press, Geneva.
[34] Al-Ansari, N.A., Abdellatiff, M., Zakaria, S., Mustafa, Y.T. and Knutsson, S. (2014) Future Prospects for Macro Rain-water Harvesting (RWH) Technique in North East Iraq. Journal of Water Resource and Protection, 6, 403-420.
http://dx.doi.org/10.4236/jwarp.2014.65041
[35] Semenov, M.A. and Stratonovitch, P. (2010) Use of Multi-Model Ensembles from Global Climate Models for Assessment of Climate Change Impacts. Climate Research, 41, 1-14.
http://dx.doi.org/10.3354/cr00836
[36] Semenov, M.A. (2007) Development of High-Resolution UKCIP02-Based Climate Change Scenarios in the UK. Agricultural and Forest Meteorology, 144, 127-138.
http://dx.doi.org/10.1016/j.agrformet.2007.02.003           eww141217lx
[37] Semeov, M.A. and Barrow, E.M. (2002) LARS-WG—A Stochastic Weather Generator for Use in Climate Impact Studies. Version 3.0 User Manual, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK, 27 p.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...