跳至主要内容

Causal Groupoid Symmetries and Big Data

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52267#.VI-sxcnQrzE

Author(s)
The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind’s capacity to comprehend the data. Heuristic partition methods may help but still need humans to adjust the parameters. The same problems exist in many other disciplines and technologies that depend on Big Data or Machine Learning. Proposed here is a fractal groupoid-theoretical method that recursively partitions the problem and requires no heuristics or human intervention. It takes two steps. First, make explicit the fundamental causal nature of information in the physical world by encoding it as a causal set. Second, construct a functor F: C C′ on the category of causal sets that morphs causal set C into smaller causal set C′ by partitioning C into a set of invariant groupoid-theoretical blocks. Repeating the construction, there arises a sequence of progressively smaller causal sets C, C′, C″, The sequence defines a fractal hierarchy of features, with the features being invariant and hence endowed with a physical meaning, and the hierarchy being scale-free and hence ensuring proper scaling at all granularities. Fractals exist in nature nearly everywhere and at all physical scales, and invariants have long been known to be meaningful to us. The theory is also of interest for NP-hard combinatorial problems that can be expressed as a causal set, such as the Traveling Salesman problem. The recursive groupoid partition promoted by functor F works against their combinatorial complexity and appears to allow a low-order polynomial solution. A true test of this property requires special hardware, not yet available. However, as a proof of concept, a suite of sequential, non-heuristic algorithms were developed and used to solve a real-world 120-city problem of TSP on a personal computer. The results are reported.
Cite this paper
Pissanetzky, S. (2014) Causal Groupoid Symmetries and Big Data. Applied Mathematics, 5, 3489-3510. doi: 10.4236/am.2014.521327
 

[1] Pissanetzky, S. (2014) Causal Groupoid Symmetries. Applied Mathematics, 5, 628-641.
www.scirp.org/Journal/Home.aspx?IssueID=4511
http://dx.doi.org/10.4236/am.2014.54059
[2] Kauffman, S. (2011) Answering Descartes: Beyond Turing. Proceedings of European Conference on Artificial Life (ECAL 2011), Paris, 8-12 August 2011, 11-22.
http://mitpress.mit.edu/sites/default/files/titles/alife/0262297140chap4.pdf
[3] Opdyke, W.F. (1992) Refactoring Object-Oriented Frameworks. Ph.D. Thesis, Department of Computer Science, University of Illinois, Urbana Champaign, Illinois.
http://dl.acm.org/citation.cfm?id=169783
[4] Pissanetzky, S. (2012) Reasoning with Computer Code: A New Mathematical Logic. Journal of Artificial General Intelligence, 3, 11-42.
www.degruyter.com/view/j/jagi.2012.3.issue-3/issue-files/jagi.2012.3.issue-3.xml
[5] Cuntz, H., Mathy, A. and Hausser, M. (2012) A Scaling Law Derived from Optimal Dendritic Wiring. Proceedings of the National Academy of Sciences of the United States of America, 109, 11014-11018.
www.pnas.org/content/109/27/11014.abstract
http://dx.doi.org/10.1073/pnas.1200430109
[6] Pissanetzky, S. and Lanzalaco, F. (2013) Black-Box Brain Experiments, Causal Mathematical Logic, and the Thermodynamics of Intelligence. Journal of Artificial General Intelligence, 4, 10-43.
www.degruyter.com/view/j/jagi.2013.4.issue-3/jagi-2013-0005/jagi-2013-0005.xml
[7] Lanzalaco, F. and Pissanetzky, S. (2013) Causal Mathematical Logic as a Guiding Framework for the Prediction of “Intelligence Signals” in Brain Simulations. Journal of Artificial General Intelligence, 4, 44-88.
www.degruyter.com/view/j/jagi.2013.4.issue-3/jagi-2013-0006/jagi-2013-0006.xml
[8] MacGregor, J.N. and Chu, Y. (2011) Human Performance on the Traveling Salesman and Related Problems: A Review. The Journal of Problem Solving, 3, 1-29.
http://docs.lib.purdue.edu/jps/vol3/iss2/2/
http://dx.doi.org/10.7771/1932-6246.1090
[9] Dorigo, M. and Gambardella, L.M. (1997) Ant Colonies for the Travelling Salesman Problem. Biosystems, 43, 73-81.
www.sciencedirect.com/science/article/pii/S0303264797017085
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
[10] Martin, C.F., Bhui, R., Bossaerts, P., Matsuzawa, T. and Camerer, C. (2014) Chimpanzee Choice Rates in Competitive Games Match Equilibrium Game Theory Predictions. Scientific Reports, 4, Article No. 5182.
www.nature.com/srep/2014/140605/srep05182/full/srep05182.html
http://dx.doi.org/10.1038/srep05182
[11] Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., et al. (2014) A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. Science, 345, 668-673.
www.sciencemag.org/content/345/6197/668.abstract
http://dx.doi.org/10.1126/science.1254642
[12] Zhai, Y., Ong, Y.S. and Tsang, I.W. (2014) The Emerging “Big Dimensionality”. IEEE Computational Intelligence Magazine, 9, 14-26.
www.IEEE-CIS.org
[13] Huijse, P., Estevez, P.A., Protopapas, P., Principe, J.C. and Zegers, P. (2014) Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases. IEEE Computational Intelligence Magazine, 9, 27-39.
www.IEEE-CIS.org
[14] Zaremba, W., Szegedy, C., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R. (2014) Intriguing Properties of Neural Networks. Computer Vision and Pattern Recognition, arxiv.org/abs/1312.6199.
[15] Ng, A. (2014) RSS2014: 07/16 09:00-10:00 Invited Talk: Andrew Ng (Stanford University): Deep Learning.
www.youtube.com/watch?v=W15K9PegQt0
[16] Pissanetzky, S. (2011) Emergence and Self-Organization in Partially Ordered Sets. Complexity, 17, 19-38.
http://dx.doi.org/10.1002/cplx.20389
[17] Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego.
http://
www.alainconnes.org/docs/book94bigpdf.pdf
[18] Hulpke, A. (2010) Notes on Computational Group Theory.
www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
[19] Fuster, J.M. (2005) Cortex and Mind. Oxford University Press, New York.
http://ukcatalogue.oup.com/product/9780195300840.do
[20] Fuster, J.M. (2009) Cortex and Memory: Emergence of a New Paradigm. Journal of Cognitive Neuroscience, 21, 2047-2072.
http://cogsci.fmph.uniba.sk/~farkas/courses/Neurocomp/References/fuster.memory.jocn09.pdf
http://dx.doi.org/10.1162/jocn.2009.21280
[21] Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R. and Lutz, E. (2012) Experimental Verification of Landauer’s Principle Linking Information and Thermodynamics. Nature, 483, 187-189.
www.nature.com/nature/journal/v483/n7388/full/nature10872.html
http://dx.doi.org/10.1038/nature10872
[22] Pissanetzky, S. (2014) Tours for the Traveling Salesman Problem gr120.
www.scicontrols.com/Publications/TheTours.txt
[23] Eguro, K., Hauck, S. and Sharma, A. (2005) Architecture Adaptive Range Limit Windowing for Simulated Annealing FPGA Placement. Microsoft Research, Design Automation Conference, San Francisco, 14-17 June 2005, 439-444.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10020
[24] Reinelt, G. (1995) Discrete and Combinatorial Optimization. tsplib.
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
[25] Index of /groups/comopt/software/tsplib95/xmltsplib/instances. 1995.
www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/
[26] Assembla Oocplex.
www.assembla.com/code/oocplex/subversion/nodes/3/
objectOrientedIntegerProgramming/sampleData/TSPLIB/gr120.opt.tour
[27] Assembla Oocplex.
www.assembla.com/code/oocplex/subversion/nodes/3/objectOrientedIntegerProgramming/
sampleData/TSPLIB/gr120.tsp
[28] The Traveling Salesman Problem.
www.math.uwaterloo.ca/tsp/
[29] Wissner-Gross, A.D. and Freer, C.E. (2013) Causal Entropic Forces. Physical Review Letters, 110, Article ID: 168702.
www.alexwg.org/publications/PhysRevLett_110-168702.pdf          eww141216lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...