Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52760#.VKISbcCAM4
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52760#.VKISbcCAM4
Author(s)
1Centre for Plant Diversity and Systematics, School of Biological Sciences, University of Reading, Berkshire, UK.
2Unité de Recherche “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE3498 CNRS-UPJV), Jules Verne University of Picardie, Amiens, France.
3Departamento de Biología Vegetal II, F. Farmacia, Universidad Complutense, Madrid, Spain.
2Unité de Recherche “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE3498 CNRS-UPJV), Jules Verne University of Picardie, Amiens, France.
3Departamento de Biología Vegetal II, F. Farmacia, Universidad Complutense, Madrid, Spain.
We assess how effectively the current network of
protected areas (PAs) across the Iberian Peninsula will conserve plant
diversity under near-future (2020) climate change. We computed 3267
MAXENT environmental niche models (ENMs) at 1-km spatial resolution for
known Iberian plant species under two climate scenarios (1950-2000
baseline & 2020). To predict near-future species distributions
across the network of Iberian and Balearics PAs, we combined projections
of species’ ENMs with simulations of propagule dispersal by using six
scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km,
2 km and unlimited). Mined PA grid cell values for each species were
then analyzed. We forecast 3% overall floristic diversity richness loss
by 2020. The habitat of regionally extant species will contract on
average by 13.14%. Niche movement exceeds 1 km per annum for 30% of
extant species. While the southerly range margin of northern plant
species retracts northward at 8.9 km per decade, overall niche movement
is more easterly and westerly than northerly. There is little expansion
of the northern range margin of southern plant species even under
unlimited dispersal. Regardless of propagule dispersal rate, altitudinal
niche movement of +25 m per decade is strongest for northern species.
Pyrenees flora is most vulnerable to near-future climate change with
many northern plant species responding by shifting their range westerly
and easterly rather than northerly. Northern humid habitats will be
particularly vulnerable to near-future climate change. Andalusian
National Parks will become important southern biodiversity refuges. With
limited human intervention (particularly in the Pyrenees), we conclude
that floristic diversity in Iberian PAs should withstand near-future
climate change.
KEYWORDS
Cite this paper
Heap, M. , Culham, A. , Lenoir, J. and Gavilán, R.
(2014) Can the Iberian Floristic Diversity Withstand Near-Future
Climate Change?. Open Journal of Ecology, 4, 1089-1101. doi: 10.4236/oje.2015.417089.
[1] |
Chen, I.C., Hill, J.K.,
Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of
Species Associated with High Levels of Climate Warming. Science, 333,
1024-1026. http://dx.doi.org/10.1126/science.1206432 |
[2] | Parmesan, C. and Yohe, G. (2003) A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42. http://dx.doi.org/10.1038/nature01286 |
[3] |
Lenoir, J., Gégout, J.C.,
Guisan, A., Vittoz, P., Wohlgemuth, T., et al. (2010) Going against the
Flow: Potential Mechanisms for Unexpected Downslope Range Shifts in a
Warming Climate. Ecography, 33, 295-303. http://dx.doi.org/10.1111/j.1600-0587.2010.06279.x |
[4] |
Crimmins, S.M., Dobrowski, S.Z.,
Greenberg, J.A., Abatzoglou, J.T. and Mynsberge, A.R. (2011) Changes in
Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum
Elevations. Science, 331, 324-327. http://dx.doi.org/10.1126/science.1199040 |
[5] |
VanDerWal, J., Murphy, H.T.,
Kutt, A.S., Perkins, G.C., Bateman, B.L., et al. (2013) Focus on
Poleward Shifts in Species’ Distribution Underestimates the Fingerprint
of Climate Change. Nature Climate Change, 3, 239-243. http://dx.doi.org/10.1038/nclimate1688 |
[6] |
Cannone, N. and Pignatti, S.
(2014) Ecological Responses of Plant Species and Communities to Climate
Warming: Upward Shift or Range Filling Processes? Climatic Change, 123,
201-214. http://dx.doi.org/10.1007/s10584-014-1065-8 |
[7] | Lenoir, J. and Svenning, J.C. (2014) Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography. http://dx.doi.org/10.1111/ecog.00967 |
[8] | Groom, Q.J. (2013) Some Poleward Movement of British Native Vascular Plants Is Occurring, but the Fingerprint of Climate Change Is Not Evident. PeerJ, 1, e77. http://dx.doi.org/10.7717/peerj.77 |
[9] |
Colwell, R.K., Brehm, G.,
Cardelús, C.L., Gilman, A.C. and Longino, J.T. (2008) Global Warming,
Elevational Range Shifts, and Lowland Biotic Attrition in the Wet
Tropics. Science, 322, 258-261. http://dx.doi.org/10.1126/science.1162547 |
[10] | Feeley, K.J. and Silman, M.R. (2010) Biotic Attrition from Tropical Forests Correcting for Truncated Temperature Niches. Global Change Biology, 16, 1830-1836. http://dx.doi.org/10.1111/j.1365-2486.2009.02085.x |
[11] | Fernández-González, F., Loidi, J., Moreno, J.C., Del Arco, M., Férnández-Cancio, A., et al. (2005) Impactos sobre la biodiversidad vegetal. In: Moreno, J.M., Ed., Evaluación preliminar de los impactos en Espana por efecto del cambio climático, Ministerio de MedioAmbiente, Madrid, 183-248. |
[12] |
Araújo, M.B., Alagador, D.,
Cabeza, M., Nogués-Bravo, D. and Thuiller, W. (2011) Climate Change
Threatens European Conservation Areas. Ecology Letters, 14, 484-492. http://dx.doi.org/10.1111/j.1461-0248.2011.01610.x |
[13] |
Thuiller, W., Lavorel, S.,
Araújo, M.B., Sykes, M.T. and Prentice, I.C. (2005) Climate Change
Threats to Plant Diversity in Europe. Proceedings of the National
Academy of Sciences of the United States of America, 102, 8245-8250. http://dx.doi.org/10.1073/pnas.0409902102 |
[14] | Lenoir, J., Graae, B.J., Aarrestad, P.A., Alsos, I.G., Armbruster, W.S., Austrheim, G., et al. (2013) Local Temperatures Inferred from Plant Communities Suggest Strong Spatial Buffering of Climate Warming across Northern Europe. Global Change Biology, 19, 1470-1481. http://dx.doi.org/10.1111/gcb.12129 |
[15] |
Willis, K.J. and Bhagwat, S.A.
(2009) Biodiversity and Climate Change. Science, 326, 806-807. http://dx.doi.org/10.1126/science.1178838 |
[16] |
Dullinger, S., Gattringer, A.,
Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., et al. (2012)
Extinction Debt of High-Mountain Plants under Twenty-First-Century
Climate Change. Nature Climate Change, 2, 619-622. http://dx.doi.org/10.1038/nclimate1514 |
[17] | Heap, M.J., Culham, A. and Osborne, J. (2013) The Benefits of a Compute Cluster Approach to High Spatial Resolution Biodiversity Richness Modelling: Projecting the Impact of Climate Change on Mediterranean Flora. The International Journal of Climate Change: Impacts and Responses, 4, 115-218. |
[18] | Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008) Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152. http://dx.doi.org/10.1016/j.ppees.2007.09.004 |
[19] |
Yesson, C. and Culham, A. (2006)
A Phyloclimatic Study of Cyclamen. BMC Evolutionary Biology, 6, 72. http://dx.doi.org/10.1186/1471-2148-6-72 |
[20] | Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026 |
[21] |
Hijmans, R.J., Cameron, S.E.,
Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very High Resolution
Interpolated Climate Surfaces for Global Land Areas. International
Journal of Climatology, 25, 1965-1978. http://dx.doi.org/10.1002/joc.1276 |
[22] | FAO and ISRIC (2010) Harmonized World Soil Database (Version 1.1). FAO, Rome and IIASA, Laxenburg. |
[23] | Hansen, M., DeFries, R., Townshend, J.R.G. and Sohlberg, R. (1998) UMD Global Land Cover Classification, 1 Kilometer, 1.0. Department of Geography, University of Maryland, College Park, 1981-1994. |
[24] |
Pliscoff, P., Luebert, F.,
Hilger, H.H. and Guisan, A. (2014) Effects of Alternative Sets of
Climatic Predictors on Species Distribution Models and Associated
Estimates of Extinction Risk: A Test with Plants in an Arid Environment.
Ecological Modelling, 288, 166-177. http://dx.doi.org/10.1016/j.ecolmodel.2014.06.003 |
[25] | Ramirez-Villegas, J. and Jarvis, A. (2010) Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis. Working Paper No. 1, Policy Analysis 1, 1-18. |
[26] |
Thiers, B. (2011) Continuously
Updated. Index Herbariorum: A Global Directory of Public Herbaria and
Associated Staff. New York Botanical Garden’s Virtual Herbarium. http://sciweb.nybg.org/science2/IndexHerbariorum.asp http://sweetgum.nybg.org/ih/ |
[27] |
Yesson, C., Brewer, P.W.,
Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M. and Culham, A.
(2007) How Global Is the Global Biodiversity Information Facility? PLoS
ONE, 2, e1124. http://dx.doi.org/10.1371/journal.pone.0001124 |
[28] |
Heap, M.J. and Culham, A. (2010)
Automated Pre-Processing Strategies for Species Occurrence Data Used in
Biodiversity Modelling. In: Setchi, R., Jordanov, I., Howlett, R.J. and
Jain, L.C., Eds., Knowledge-Based and Intelligent Information and
Engineering Systems, Springer Berlin Heidelberg, Berlin, 517-526. http://dx.doi.org/10.1007/978-3-642-15384-6_55 |
[29] | Castroviejo, S. (1986) Flora iberica: Plantas vasculares de la Península Ibérica e Islas Baleares. |
[30] | Casas, C. (1998) The Anthocerotae and Hepaticae of Spain and Balearic Islands: A Preliminary Checklist. Orsis, 13, 17-26. |
[31] | Rivas-Martínez, S., Diaz, T.E., Fernandez-Gonzalez, F., Izco, J., Loidi, J., Lous?, M. and Penas, á. (2002) Vascular Plant Communities of Spain and Portugal: Addenda to the Syntaxonomical Checklist of 2001. Itinera Geobotanica, 15, 5-922. |
[32] |
Euro+Med (2006) Euro+Med
PlantBase—The Information Resource for Euro-Mediterranean Plant
Diversity. http://ww2.bgbm.org/EuroPlusMed/ |
[33] | The Plant List (2010) Version 1. http://www.theplantlist.org/ |
[34] |
Ros, R.M., Mazimpaka, V.,
Abou-Salama, U., Aleffi, M., Blockeel, T.L., et al. (2013) Mosses of the
Mediterranean, an Annotated Checklist. Cryptogamie, Bryologie, 34,
99-283. http://dx.doi.org/10.7872/cryb.v34.iss2.2013.99 |
[35] | Roskov, Y., Kunze, T., Paglinawan, L., Orrell, T., Nicolson, D., et al. (2013) Species 2000 & ITIS Catalogue of Life. 2013 Annual Checklist, Species 2013. |
[36] | Encyclopedia of Life (2014) http://www.eol.org. |
[37] | Pittman, S.J. and Brown, K.A. (2011) Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PloS ONE, 6, e20583. http://dx.doi.org/10.1371/journal.pone.0020583 |
[38] | Morin, X. and Thuiller, W. (2009) Comparing Niche-and Process-Based Models to Reduce Prediction Uncertainty in Species Range Shifts under Climate Change. Ecology, 90, 1301-1313. http://dx.doi.org/10.1890/08-0134.1 |
[39] | Brommer, J.E. (2004) The Range Margins of Northern Birds Shift Polewards. Annales Zoologici Fennici, 41, 391-397. |
[40] | Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., et al. (2013) The Projected Impact of Climate and Land Use Change on Plant Diversity: An Example from West Africa. Journal of Arid Environments, 96, 48-54. http://dx.doi.org/10.1016/j.jaridenv.2013.04.008 |
[41] |
Gavilán, R.G. (2005) The Use of
Climatic Parameters and Indices in Vegetation Distribution. A Case Study
in the Spanish Sistema Central. International Journal of
Biometeorology, 50, 111-120. http://dx.doi.org/10.1007/s00484-005-0271-5 |
[42] | Hampe, A. and Jump, A.S. (2011) Climate Relicts: Past, Present, Future. Annual Review of Ecology, Evolution, and Systematics, 42, 313-333. http://dx.doi.org/10.1146/annurev-ecolsys-102710-145015 |
[43] | Thomas, C.D. (2011) Translocation of Species, Climate Change, and the End of Trying to Recreate Past Ecological Communities. Trends in Ecology & Evolution, 26, 216-221. http://dx.doi.org/10.1016/j.tree.2011.02.006 |
[44] | Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., et al. (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336, 353-355. http://dx.doi.org/10.1126/science.1219033 |
[45] |
Gottfried, M., Pauli, H.,
Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J.L.B., et al.
(2012) Continent-Wide Response of Mountain Vegetation to Climate Change.
Nature Climate Change, 2, 111-115. http://dx.doi.org/10.1038/nclimate1329 |
[46] |
Alagador, D., Cerdeira, J.O. and
Araújo, M.B. (2014) Shifting Protected Areas: Scheduling Spatial
Priorities under Climate Change. Journal of Applied Ecology, 51,
703-713. http://dx.doi.org/10.1111/1365-2664.12230 |
[47] | Dobrowski, S.Z. (2011) A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Global Change Biology, 17, 1022-1035. http://dx.doi.org/10.1111/j.1365-2486.2010.02263.x |
[48] |
Warren, R., Van DerWal, J.,
Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., et al.
(2013) Quantifying the Benefit of Early Climate Change Mitigation in
Avoiding Biodiversity Loss. Nature Climate Change, 3, 678-682. http://dx.doi.org/10.1038/nclimate1887 |
[49] | Dlugokencky, E. and Tans, P. (2014) NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends/ eww141230lx |
评论
发表评论