Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51848#.VHfPl2fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51848#.VHfPl2fHRK0
Author(s)
1Centre
de Recherche en Acquisition et Traitement de l’Image pour la Santé
(CREATIS), Centre National de la Recherche Scientifique Unité Mixte de
Recherche 5220—Institut National de la Santé et de la Recherche
Médicale Unité 1044—Université Lyon 1—Institut National des Sciences
Appliquées de Lyon, Lyon, France.
2Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5220—Institut National de la Santé et de la Recherche Médicale Unité 1044—Université Lyon 1—Institut National des Sciences Appliquées de Lyon, Lyon, France.
2European Synchrotron Radiation Facility, Grenoble, France.
2Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5220—Institut National de la Santé et de la Recherche Médicale Unité 1044—Université Lyon 1—Institut National des Sciences Appliquées de Lyon, Lyon, France.
2European Synchrotron Radiation Facility, Grenoble, France.
Phase imaging coupled to micro-tomography
acquisition has emerged as a powerful tool to investigate specimens in a
non-destructive manner. While the intensity data can be acquired and
recorded, the phase information of the signal has to be “retrieved” from
the data modulus only. Phase retrieval is an ill-posed non-linear
problem and regularization techniques including a priori knowledge are
necessary to obtain stable solutions. Several linear phase recovery
methods have been proposed and it is expected that some limitations
resulting from the linearization of the direct problem will be overcome
by taking into account the non-linearity of the phase problem. To
achieve this goal, we propose and evaluate a non-linear algorithm for
in-line phase micro-tomography based on an iterative Landweber method
with an analytic calculation of the Fréchet derivative of the
phase-intensity relationship and of its adjoint. The algorithm was
applied in the projection space using as initialization the linear mixed
solution. The efficacy of the regularization scheme was evaluated on
simulated objects with a slowly and a strongly varying phase.
Experimental data were also acquired at ESRF using a propagation-based
X-ray imaging technique for the given pixel size 0.68 μm. Two
regularization scheme were considered: first the initialization was
obtained without any prior on the ratio of the real and imaginary parts
of the complex refractive index and secondly a constant a priori value
was assumed on
.
The tomographic central slices of the refractive index decrement were
compared and numerical evaluation was performed. The non-linear method
globally decreases the reconstruction errors compared to the linear
algorithm and is achieving better reconstruction results if no prior is
introduced in the initialization solution. For in-line phase
micro-tomography, this non-linear approach is a new and interesting
method in biomedical studies where the exact value of the a priori ratio
is not known.
KEYWORDS
Cite this paper
Davidoiu, V. , Sixou, B. , Langer, M. and Peyrin,
F. (2014) Non-Linear Phase Tomography Based on Fréchet Derivative. Advances in Computed Tomography, 3, 39-50. doi: 10.4236/act.2014.34007.
[1] | Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.P. and Schlenker, M. (1996) Phase Objects in Synchrotron Radiation Hard X-Ray Imaging. Journal of Physics D: Applied Physics, 29, 133. http://dx.doi.org/10.1088/0022-3727/29/1/023 |
[2] | Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A. and Stevenson, A.W. (1996) Phase Contrast Imaging Using Polychromatic Hard X-Rays. Nature, 384, 335-338. http://dx.doi.org/10.1038/384335a0 |
[3] | Momose, A. and Fukuda, J. (1995) Phase-Contrast Radiographs of Nonstained Rat Cerebellar Specimen. Medical Physics, 22, 375. http://dx.doi.org/10.1118/1.597472 |
[4] |
Paganin, D., Mayo, S.C.,
Gureyev, T.E., Miller, P.R. and Wilkins, S.W. (2002) Simultaneous Phase
and Amplitude Extraction from a Single Defocused Image of a Homogeneous
Object. Journal of Microscopy, 206, 33-40. http://dx.doi.org/10.1046/j.1365-2818.2002.01010.x |
[5] |
Cloetens, P., Ludwig, W.,
Boller, E., Helfen, L., Salvo, L., Mache, R. and Schlenker, M. (2002)
Quantitative Phase Contrast Tomography Using Coherent Synchrotron
Radiation. Proceedings of SPIE, 4503, 82. http://dx.doi.org/10.1117/12.452867 |
[6] | Beleggia, M., Schofield, M.A., Volkov, V.V. and Zhu, Y. (2004) On the Transport of Intensity Technique for Phase Retrieval. Ultramicroscopy, 102, 37-49. http://dx.doi.org/10.1016/j.ultramic.2004.08.004 |
[7] |
Wu, X., Liu, H. and Yan, A.
(2005) X-Ray Phase-Attenuation Duality and Phase Retrieval. Optics
Letters, 30, 379-381. http://dx.doi.org/10.1364/OL.30.000379 |
[8] |
Guigay, J.P., Langer, M.,
Boistel, R. and Cloetens, P. (2007) A Mixed Contrast Transfer and
Transport of Intensity Approach for Phase Retrieval in the Fresnel
Region. Optics Letters, 32, 1617-1619. http://dx.doi.org/10.1364/OL.32.001617 |
[9] | Langer, M., Cloetens, P. and Peyrin, F. (2010) Regularization of Phase Retrieval with Phase-Attenuation Duality Prior for 3-D Holotomography. IEEE Trans. Image Processing, 19, 2428-2436. http://dx.doi.org/10.1109/TIP.2010.2048608 |
[10] |
Beltran, M.A., Paganin, D.M.,
Uesugi, K. and Kitchen, M.J. (2010) 2D and 3D X-Ray Phase Retrieval of
Multi-Material Objects Using a Single Defocus Distance. Optics Express,
18, 6423-6436. http://dx.doi.org/10.1364/OE.18.006423 |
[11] | Langer, M., Cloetens, P., Pacureanu, A. and Peyrin, F. (2012) X-Ray In-Line Phase Tomography of Multimaterial Objects. Optics Letters, 37, 2151-2153. http://dx.doi.org/10.1364/OL.37.002151 |
[12] | Ohlsson H., Yang A., Dong, R. and Sastry S. S. (2012) CPRL—An Extension of Compressive Sensing to the Phase Retrieval Problem. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L. and Weinberger, K., Eds., Advances in Neural Information Processing Systems 25, 1376-1384. |
[13] |
Candes, E.J., Eldar, Y.C.,
Strohmer, T. and Voroninski, V. (2011) Phase Retrieval via Matrix
Completion. http://arXiv:1109.0573v2 |
[14] | Gureyev, T.E. (2003) Composite Techniques for Phase Retrieval in the Fresnel Region. Optics Communications, 220, 49-58. http://dx.doi.org/10.1016/S0030-4018(03)01353-1 |
[15] | Moosmann, J., Hofmann, R., Bronnikov, A.V. and Baumbach, T. (2010) Nonlinear Phase Retrieval from Single-Distance Radiograph. Optics Express, 18, 25771-25785. http://dx.doi.org/10.1364/OE.18.025771 |
[16] | Davidoiu, V., Sixou, B., Langer, M. and Peyrin, F. (2011) Nonlinear Phase Retrieval Based on Frechet Derivative. Optics Express, 19, 22809-22819. http://dx.doi.org/10.1364/OE.19.022809 |
[17] |
Davidoiu, V., Sixou, B., Langer,
M. and Peyrin, F. (2012) Nonlinear Phase Retrieval Using Projection
Operator and Iterative Wavelet Thresholding. IEEE Signal Processing
Letters, 19, 579-582. http://dx.doi.org/10.1109/LSP.2012.2207113 |
[18] | Born, M. and Wolf, E. (1997) Principles of Optics. Cambridge University Press, Cambridge. |
[19] |
Davidoiu, V., Sixou, B., Langer,
M. and Peyrin, F. (2013) Nonlinear Approaches for the Single-Distance
Phase Retrieval Problem Involving Regularizations with Sparsity
Constraints. Applied Optics, 52, 3977-3986. http://dx.doi.org/10.1364/AO.52.003977 |
[20] | Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M. and Lenzen, F. (2008) Variational Methods in Imaging. Springer Verlag, New York. |
[21] |
Hanke, M., Neubauer, A. and
Scherzer, O. (1995) A Convergence Analysis of the Landweber Iteration
for Nonlinear Ill-Posed Problems. Numerische Mathematik, 72, 21-37. http://dx.doi.org/10.1007/s002110050158 |
[22] | Bakushinsky, A.B. (1992) The Problem of the Convergence of the Iteratively Regularized Gauss-Newton Method. Computational Mathematics and Mathematical Physics, 32, 1353-1359. |
[23] |
Bakushinsky, A.B. and Smirnova,
A. (2005) On Application of Generalized Discrepancy Principle to
Iterative Methods for Nonlinear Ill-Posed Problems. Numerical Functional
Analysis and Optimization, 26, 35-48. http://dx.doi.org/10.1081/NFA-200051631 |
[24] | Kak, A.C. and Slaney, M. (1989) Principles of Computerized Tomographic Imaging. IEEE Press, New York. |
[25] |
Langer, M., Cloetens, P.,
Guigay, J.P. and Peyrin, F. (2008) Quantitative Comparison of Direct
Phase Retrieval Algorithms in In-Line Phase Tomography. Medical Physics,
35, 4556. http://dx.doi.org/10.1118/1.2975224 |
[26] | Sanchez del Rio, M. and Dejus, R. (2004) Status of XOP: An X-Ray Optics Software Toolkit. SPIE Proceedings, 5536, 171-174. http://dx.doi.org/10.1117/12.560903 eww141128lx |
评论
发表评论