Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47223#.VFwy2mfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47223#.VFwy2mfHRK0
Author(s)
Arctic
nighttime land-surface temperatures derived by the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors onboard the NASA Terra and Aqua satellites
are investigated. We use the local equator crossing times of 22:30 and 01:30,
respectively, in the analysis of changes, trends and variations on the Arctic
region and within 120° sectors. We show increases in the number of days above 0°C
and significant increase trends over their decadal periods of March 2000
through 2010 (MODIS Terra) and July 2002 through 2012 (MODIS Aqua). The MODIS
Aqua nighttime Arctic land-surface temperature change, +0.2°C ± 0.2°C with
P-value of 0.01 indicates a reduction relative to the MODIS Terra nighttime
Arctic land-surface temperature change, +1.8°C ± 0.3°C with P-value of 0.01.
This reduction is a decadal non-stationary component of the Arctic land-surface
temperature changes. The reduction is greatest, -1.3°C ± 0.2°C with P-value of
0.01 in the Eastern Russia— Western North American
sector of the Arctic during the July 2002 through 2012.
KEYWORDS
Cite this paper
Muskett, R. (2014) MODIS-Derived Nighttime Arctic
Land-Surface Temperature Nascent Trends and Non-Stationary Changes. American Journal of Climate Change, 3, 169-177. doi: 10.4236/ajcc.2014.32016.
[1] | Mannstein, H. (1987) Surface Energy Budget, Surface Temperature and Thermal Inertia. In: Vaughan, R.A. and Reidel, D., Eds., Remote Sensing Applications in Meteorology and Climatology, Reidel Publishing Co., Dordrecht, 391-410. |
[2] | Wan, Z. (1999) MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD) Version 3.3, National Aeronautics and Space. US Department of Commerce, Washington DC. |
[3] |
Rowland, J.C., Jones, C.E.,
Altmann, G., Bryan, R., Crosby, B.T., Geernaert, G.L., Hinzman, L.D.,
Kane, D.L., Lawrence, D.M., Mancino, A., Marsh, P., McNamara, J.P.,
Romanovsky, V.E., Toniolo, H., Travis, B.J., Trochim, E. and Wilson,
C.J. (2010) Arctic Landscapes in Transition: Responses to Thawing
Permafrost. EOS Transactions of The American Geophysical Union, 91,
229-230. http://dx.doi.org/10.1029/2010EO260001 |
[4] |
Jorgenson, M.T., Romanovsky,
V.E., Harden, J., Shur, Y.L., O’Donnell, J., Schuur, T. and Kanevskiy,
M. (2010) Resilience and Vulnerability of Permafrost to Climate Change.
Canadian Journal of Forest Research, 40, 1219-1236. http://dx.doi.org/10.1139/X10-060 |
[5] |
Grosse, G., Marchenko, S.,
Romanovsky, V., Wickland, K.P., French, N., Waldrop, M.,
Bourgeau-Chavez, L., Striegl, R., Harden, J., Turetsky, M., McGuire,
A.D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E. and Jorgenson,
T. (2011) Vulnerability of High Latitude Soil Organic Carbon in North
America to Disturbance. Journal Geophysical Research, 116, Article ID:
G00K06. http://dx.doi.org/10.1029/2010JG001507 |
[6] |
Houghton, R.A., Davidson, E.A.
and Woodwell, G.M. (1998) Missing Sinks, Feedbacks, and Understanding
the Role of Terrestrial Ecosystems in the Global Carbon Balance. Global
Biogeochemical Cycles, 12, 25-34. http://dx.doi.org/10.1029/97GB02729 |
[7] |
Muskett, R.R. (2013)
MODIS-Derived Arctic Land-Surface Temperature Trends. Atmospheric and
Climate Science, 3, 55-60. http://dx.doi.org/10.4236/acs.2013.31008 |
[8] |
Xiong, X.X., Chiang, K.F., Wu,
A.S., Barnes, W.L., Guenther, B. and Salomonson, V.V. (2008) Multiyear
On-Orbit Calibration and Performance of Terra MODIS Thermal Emissive
Bands. IEEE Transaction on Geoscience and Remote Sensing, 46, 1790-1803.
http://dx.doi.org/10.1109/TGRS.2008.916217 |
[9] | Parkinson, C.L., Ward, A. and King, M.D. (2006) Earth Science Reference Handbook: A Guide to NASA’s Earth Science Program and Earth Observing Satellite Missions. In: Parkinson, C.L., Ward, A. and King, M.D., Eds., Earth Science Reference Handbook, National Aeronautics and Space Administration, US Department of Commerce, Washington DC, 1-6, 73-88, 225-227. |
[10] | L’Ecuyer, T.S. and Jiang, J.H. (2010) Touring the Atmosphere Aboard the A-Train. Physics Today, 63, 36-41. |
[11] |
Xiong, X.X., Sun, J.Q. and
Barnes, W. (2008) Intercomparison of On-Orbit Calibration Consistency
between Terra and Aqua MODIS Reflective Solar Bands Using the Moon. IEEE
Geoscience and Remote Sensing Letters, 5, 778-782. http://dx.doi.org/10.1109/LGRS.2008.2005591 |
[12] |
Wan, Z. (2008) New Refinements
and Validation of MODIS Land-Surface Temperature/Emissivity Products.
Remote Sensing Environment, 112, 59-74. http://dx.doi.org/10.1016/j.rse.2006.06.026 |
[13] | Coll, C., Wan, Z. and Galve, G.M. (2009) Temperature-Based and Radiance-Based Validations of the V5 MODIS Land Surface Temperature Product. Journal Geophysical Research, 114, Article ID: D20102. |
[14] | Wang, W., Liang, S. and Meyers, T. (2008) Validating MODIS Land Surface Temperature Products Using Long-Term Nighttime Ground Measurements. Remote Sensing Environment, 112, 623-635. |
[15] |
Hall, D.K., Box, J.E., Casey,
K.A., Hook, S.J., Shuman, C.A. and Steffen, K. (2008) Comparison of
Satellite-Derived and In-Situ Observations of Ice and Snow Surface
Temperatures over Greenland. Remote Sensing Environment, 112, 3739-3749.
http://dx.doi.org/10.1016/j.rse.2008.05.007 |
[16] |
Hachem, S., Duguay, C.R. and
Allard, M. (2011) Comparison of MODIS-Derived Land Surface Temperatures
with Near-Surface Soil and Air Temperature Measurements in the
Continuous Permafrost Terrain. The Cryosphere Discussion, 5, 1583-1625. http://dx.doi.org/10.5194/tcd-5-1583-2011 |
[17] | Weatherhead, B., Tanskanen, A. and Stevermer, A. (2005) Factors Affecting Surface Ultraviolet Radiation Levels in the Arctic. Chapter 5.4. In: ACIA, Ed., Arctic Climate Impact Assessment, Cambridge University Press, 159-164. |
[18] |
Usoskin, I.G. (2008) A History
of Solar Activity over Millennia. Living Reviews in Solar Physics, 5,
1-88. http://www.livingreviews.org/lrsp-2008-3 |
[19] | Stephenson, F.R. (1988) Solar Variability from Historical Records. In: Stephenson, F.R. and Wolfendale, A.W., Eds., NATO ASI Series C, Mathematical and Physical Sciences Vol. 236, Kluwer Academic Publishers, Springer, New York, 109-129. |
[20] |
Soon, W.W.-H. (2009) Solar
Arctic-Mediated Climate Variation on Multidecadal to Centennial
Timescales: Empirical Evidence, Mechanistic Explanations, and Testable
Consequences. Physical Geography, 30, 144-184. http://dx.doi.org/10.2747/0272-3646.30.2.144 |
[21] |
Soon, W.W.-H. (2005) Variable
Solar Irradiance as a Plausible Agent for Multidecadal Variations in the
Arctic-Wide Surface Air Temperature Record of the Past 130 Years.
Geophysical Research Letters, 32, Article ID: L16712. http://dx.doi.org/10.1029/2005GL023429 |
[22] |
Usoskin, I.G., Solanki, S.K. and
Kovaltsov, G.A. (2007) Grand Minima and Maxima of Solar Activity: New
Observational Constraints. Astronomy and Astrophysics, 471, 301-309. http://dx.doi.org/10.1051/0004-6361:20077704 |
[23] |
Scafetta, N. and West, B.J.
(2006) Phenomenological Solar Signature in 400 Years of Reconstructed
Northern Hemisphere Temperature Record. Geophysical Research Letters,
33, Article ID: L17718. http://dx.doi.org/10.1029/2006GL027142 |
[24] | Tinsley, B.A. and Yu, F. (2004) Atmospheric Ionization and Clouds as Links between Solar Activity and Climate. In: Judit, M., Fox, R., Frohlich, C., Hudson, H.S., Kuhn, J., McCormack, J., North, G., Sprigg, W. and Wu, S.T., Eds., Solar Variability and Its Effects on Climate, AGU Geophysical Monograph Series, No. 141, 321-339. eww141107lx |
评论
发表评论