Modeling Operational Parameters of a Reactive Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51367#.VGVcx2fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51367#.VGVcx2fHRK0
Author(s)
This work will create an electro-dialysis cell model
that has the purpose of refining anodic scrap copper—an element that
currently must be returned to the copper conversion process. The cell
modeling is based on Ohm’s Law, while the resulting copper deposit
morphology is studied through the thickness of the layer deposited on
the surface and the electric current lines traced from the anode to the
cathode. The use of the model demonstrated that it is possible to
effectively predict the specific energy consumption required for the
refinement of the anodic scrap copper, and the morphology of the cathode
obtained, with a margin of error of 9%.
Cite this paper
Cifuentes, G. , Hernández, J. , Manríquez, J. and
Guajardo, N. (2014) Modeling Operational Parameters of a Reactive
Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper. American Journal of Analytical Chemistry, 5, 1011-1019. doi: 10.4236/ajac.2014.515107.
[1] | Cifuentes, G. (2000) Theory and Praxis of Electrometallurgy (Teoría y práctica de la electrometalurgia). Class Notes, Metallurgical Department at University of Santiago of Chile, Santiago. |
[2] | Urra, C. (2003) Electrolytic Refining of Particulate Anodic Scrap (Refinación electrolítica de scrap anódico particulado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago. |
[3] | Davenport, G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive Metallurgy of Copper. 3rd Edition, Elsevier, Oxford. |
[4] | Cifuentes, G., Hernández, J. and Guajardo, N. (2014) Recovering Scrap Anode Copper Using Reactive Electrodialysis. American Journal of Analytical Chemistry, 5, 9. |
[5] | Hernández, J. (2014) Anodic Scrap Recovering Using Reactive Electrodialysis (Recuperación de Scrap anódico por electrodiálisis reactiva). M.Sc. Thesis, Metallurgical Department, University of Santiago of Chile, Santiago. |
[6] |
Cifuentes, G., Simpson, J.,
Lobos, F., Briones, L. and Morales, A. (2009) Copper Electrowinning
Based on Reactive Electrodialysis. Journal of the Chilean Chemical
Society, 54, 334-338. http://dx.doi.org/10.4067/S0717-97072009000400002 |
[7] | Walsh, F. (1999) A First Course of Electrochemical Engineering (Un primer curso de Ingeniería Electroquímica). Editorial Club Universitario, San Vicente, Espana. |
[8] | Bockris, J. and Reddy, A. (1977) Modern Electrochemistry: An Introduction to an Interdisciplinary Area, Volume 2. 3th Edition, Plenum Rosetta Edition, New York. |
[9] |
Introduction to COMSOL Multiphysics. http://www.comsol.com/shared/downloads/IntroductionToCOMSOLMultiphysics.pdf |
[10] |
Xu, T.W. (2005) Ion Exchange
Membranes: State of Their Development and Perspective. Journal of
Membrane Science, 263, 1-29. http://dx.doi.org/10.1016/j.memsci.2005.05.002 |
[11] |
Baker, R.W. (2004) Membrane
Technology and Applications. 2nd Edition, Membrane Technology and
Research, Inc., Menlo Park, California. http://dx.doi.org/10.1002/0470020393 |
[12] | Davis, S.M. (2006) Electrochemical Splitting of Sodium Sulfate. M.Sc. Thesis, Georgia Institute of Technology, Atlanta, Georgia. eww141114lx |
评论
发表评论