跳至主要内容

IL-10 Gene Knockout Reduces the Expression of mGlu Receptor 1a/b and Decreases the Glutamate-Dependent Production of Nitric Oxide

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51240#.VGAYc2fHRK0

IL-10 provides trophic and survival effects directly on neurons, promotes axonal outgrowth, and stimulates neuroregeneration. In this study, we analyzed the activities of arginase and nitric oxide synthase (NOS) in synaptoneurosomes derived from brain cortex of C57BL/6 IL-10 gene-knockout (KO) and wild-type (Wt) mice and determined that the synaptoneurosomes derived from KO mice present lower arginase II activity and lower spermine content than those derived from Wt mice, whereas the basal NOS activity in the KO synaptoneurosomes was higher than that observed in the control synaptoneurosomes. Moreover, our results indicate that the plasma membranes isolated from the KO mice brain exhibit significantly lower spermine-induced enhancement of [3H] MK-801 binding than the plasma membranes from the brain of Wt mice. Glutamate increases the production of nitric oxide (NO) in Wt synaptoneurosomes in a dose-dependent manner, whereas in the KO synaptoneurosomes, this amino acid does not affect the synthesis of NO. The glutamate-dependent acceleration of NO synthesis in Wt synaptoneurosomes was abrogated by LY367385, an antagonist of mGluR1a/b. The western blot analysis of the synaptoneurosomal proteins demonstrates that the expression of the subunits of NMDAR (NMDAR2A and NMDAR2B), the level of NMDAR-bound nNOS and the expression of iNOS are not changed in KO mice and that only the level of mGluR1a/b is markedly reduced in the synaptoneurosomes of KO mice. We conclude that a neuroprotective and neuroregenerative property of IL-10, in addition to its effects on polyamine metabolism and the spermine-dependent modulation of NMDAR, may involve the regulation of mGluR1a/b expression.
Cite this paper
Koriauli, S. , Barbakadze, T. , Natsvlishvili, N. , Dabrundashvili, N. , Kvaratskhelia, E. and Mikeladze, D. (2014) IL-10 Gene Knockout Reduces the Expression of mGlu Receptor 1a/b and Decreases the Glutamate-Dependent Production of Nitric Oxide. Journal of Biomedical Science and Engineering, 7, 1019-1029. doi: 10.4236/jbise.2014.713099
 

[1] Grilli, M., Barbieri, I., Basudev, H., Brusa, R., Casati, C., Lozza, G. and Ongini, E. (2000) Interleukin-10 Modulates Neuronal Threshold of Vulnerability to Ischaemic Damage. European Journal of Neuroscience, 12, 2265-2272.
http://dx.doi.org/10.1046/j.1460-9568.2000.00090.x
[2] Boyd, Z.S., Kriatchko, A., Yang, J., Agarwal, N., Wax, M.B. and Patil, R.V. (2003) Interleukin-10 Receptor Signaling through STAT-3 Regulates the Apoptosis of Retinal Ganglion Cells in Response to Stress. Investigative Ophthalmology & Visual Science, 44, 5206-5211.
http://dx.doi.org/10.1167/iovs.03-0534
[3] Zhou, Z., Peng, X., Insolera, R., Fink, D.J. and Mata, M. (2009) IL-10 Promotes Neuronal Survival Following Spinal Cord Injury. Experimental Neurology, 220, 183-190.
http://dx.doi.org/10.1016/j.expneurol.2009.08.018
[4] Vidal, P.M., Lemmens, E., Dooley, D. and Hendrix, S. (2013) The Role of “Anti-Inflammatory” Cytokines in Axon Regeneration. Cytokine & Growth Factor Reviews, 24, 1-12.
http://dx.doi.org/10.1016/j.cytogfr.2012.08.008
[5] Zhou, Z., Peng, X., Insolera, R., Fink, D.J. and Mata, M. (2009) Interleukin-10 Provides Direct Trophic Support to Neurons. Journal of Neurochemistry, 110, 1617-1627.
http://dx.doi.org/10.1111/j.1471-4159.2009.06263.x
[6] Lang, R., Patel, D., Morris, J.J., Rutschman, R.L. and Murray, P.J. (2002) Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. The Journal of Immunology, 169, 2253-2263.
http://dx.doi.org/10.4049/jimmunol.169.5.2253
[7] Munder, M., Eichmann, K., Morán, J.M., Centeno, F., Soler, G. and Modolell, M. (1999) Th1/Th2-Regulated Expression of Arginase Isoforms in Murine Macrophages and Dendritic Cells. The Journal of Immunology, 163, 3771-3777.
[8] Chu, P.J., Saito, H. and Abe, K. (1995) Polyamines Promote Regeneration of Injured Axons of Cultured Rat Hippocampal Neurons. Brain Research, 673, 233-241.
http://dx.doi.org/10.1016/0006-8993(94)01419-I
[9] Williams, K. (1997) Interactions of Polyamines with Ion Channels. Biochemical Journal, 325, 289-297.
[10] Pellegrini-Giampietro, D.E. (2003) An Activity-Dependent Spermine-Mediated Mechanism That Modulates Glutamate Transmission. Trends in Neurosciences, 26, 9-11.
http://dx.doi.org/10.1016/S0166-2236(02)00004-8
[11] Liu, P., Gupta, N., Jing, Y. and Zhang, H. (2008) Age-Related Changes in Polyamines in Memory-Associated Brain Structures in Rats. Neuroscience, 155, 789-796.
http://dx.doi.org/10.1016/j.neuroscience.2008.06.033
[12] Mori, M. and Gotoh, T. (2000) Regulation of Nitric Oxide Production by Arginine Metabolic Enzymes. Biochemical and Biophysical Research Communications, 275, 715-719.
http://dx.doi.org/10.1006/bbrc.2000.3169
[13] Estévez, A.G., Sahawneh, M.A., Lange, P.S., Bae, N., Egea, M. and Ratan, R.R. (2006) Arginase 1 Regulation of Nitric Oxide Production Is Key to Survival of Trophic Factor-Deprived Motor Neurons. The Journal of Neuroscience, 26, 8512-8516.
http://dx.doi.org/10.1523/JNEUROSCI.0728-06.2006
[14] Wiesinger, H. (2001) Arginine Metabolism and the Synthesis of Nitric Oxide in the Nervous System. Progress in Neurobiology, 64, 365-391.
http://dx.doi.org/10.1016/S0301-0082(00)00056-3
[15] Lange, P.S., Langley, B., Lu, P. and Ratan, R.R. (2004) Novel Roles for Arginase in Cell Survival, Regeneration, and Translation in the Central Nervous System. Journal of Nutrition, 134, 2812S-2817S.
[16] Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J.W., Wang, Y.T., Salter, M.W. and Tymianski, M. (2002) Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor-PSD-95 Protein Interactions. Science, 298, 846-850.
http://dx.doi.org/10.1126/science.1072873
[17] Wang, H. and Zhuo, M. (2012) Group I Metabotropic Glutamate Receptor-Mediated Gene Transcription and Implications for Synaptic Plasticity and Diseases. Frontiers in Pharmacology, 3, 189.
http://dx.doi.org/10.3389/fphar.2012.00189
[18] Maiese, K., Vincent, A., Lin, S.H. and Shaw, T. (2000) Group I and Group III Metabotropic Glutamate Receptor Subtypes Provide Enhanced Neuroprotection. Journal of Neuroscience Research, 62, 257-272.
[19] Maiese, K., Chong, Z.Z. and Li, F. (2005) Driving Cellular Plasticity and Survival through the Signal Transduction Pathways of Metabotropic Glutamate Receptors. Current Neurovascular Research, 2, 425-446.
http://dx.doi.org/10.2174/156720205774962692
[20] Chen, T., Cao, L., Dong, W., Luo, P., Liu, W., Qu, Y. and Fei, Z. (2012) Protective Effects of mGluR5 Positive Modulators against Traumatic Neuronal Injury through PKC-Dependent Activation of MEK/ERK Pathway. Neurochemical Research, 37, 983-990.
http://dx.doi.org/10.1007/s11064-011-0691-z
[21] Byrnes, K.R., Loane, D.J. and Faden, A.I. (2009) Metabotropic Glutamate Receptors as Targets for Multipotential Treatment of Neurological Disorders. Neurotherapeutics, 6, 94-107.
http://dx.doi.org/10.1016/j.nurt.2008.10.038
[22] Hollingsworth, E.B., McNeal, E.T., Burton, J.L., Williams, R.J., Daly, J.W. and Creveling, C.R. (1985) Biochemical Characterization of a Filtered Synaptoneurosome Preparation from Guinea Pig Cerebral Cortex: Cyclic Adenosine 3’: 5’-Monophosphate-Generating Systems, Receptors, and Enzymes. Journal of Neuroscience, 5, 2240-2253.
[23] Weiler, I.J., Spangler, C.C., Klintsova, A.Y., Grossman, A.W., Kim, S.H., Bertaina-Anglade, V., Khaliq, H., de Vries, F.E., Lambers, F.A., Hatia, F., Base, C.K. and Greenough, W.T. (2004) Fragile X Mental Retardation Protein Is Necessary for Neurotransmitter-Activated Protein Translation at Synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504-17509.
http://dx.doi.org/10.1073/pnas.0407533101
[24] Benavides, J., Claustre, Y. and Scatton, B. (1988) L-Glutamate Increases Internal Free Calcium Levels in Synaptoneurosomes from Immature Rat Brain via Quisqualate Receptors. Journal of Neuroscience, 8, 3607-3615.
[25] Muddashetty, R.S., Kelic, S., Gross, C., Xu, M. and Bassell, G.J. (2007) Dysregulated Metabotropic Glutamate Receptor-Dependent Translation of AMPA Receptor and Postsynaptic Density-95 mRNAs at Synapses in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 27, 5338-5348.
http://dx.doi.org/10.1523/JNEUROSCI.0937-07.2007
[26] Kim, S.H., Fraser, P.E., Westaway, D., St. George-Hyslop, P.H., Ehrlich, M.E. and Gandy, S. (2010) Group II Metabotropic Glutamate Receptor Stimulation Triggers Production and Release of Alzheimer’s Amyloid β42 from Isolated Intact Nerve Terminals. Journal of Neuroscience, 30, 3870-3875.
http://dx.doi.org/10.1523/JNEUROSCI.4717-09.2010
[27] Mesquita, A.R., Correia-Neves, M., Castroa, A.G.R., Vieira, P., Pedrosaa, J., Palhaa, J.A. and Sousaa, N. (2008) IL-10 Modulates Depressive-Like Behavior. Journal of Psychiatric Research, 43, 89-97.
http://dx.doi.org/10.1016/j.jpsychires.2008.02.004
[28] Xin, J., Wainwright, D.A., Mesnard, N.A., Serpe, C.J., Sanders, V.M. and Jones, K.J. (2011) IL-10 within the CNS Is Necessary for CD4+ T Cells to Mediate Neuroprotection. Brain, Behavior, and Immunity, 25, 820-829.
http://dx.doi.org/10.1016/j.bbi.2010.08.004
[29] Sethi, R., Chava, R.S., Bashir, S. and Castro, E.M. (2011) An Improved High Performance Liquid Chromatographic Method for Identification and Quantization of Polyamines as Benzoylated Derivatives. American Journal of Analytical Chemistry, 2, 456-469.
http://dx.doi.org/10.4236/ajac.2011.24055
[30] Yu, H., Iyer, R.K., Kern, R.M., Rodriguez, W.I., Grody, W.W. and Cederbaum, S.D. (2001) Expression of Arginase Isozymes in Mouse Brain. Journal of Neuroscience Research, 66, 406-422.
http://dx.doi.org/10.1002/jnr.1233
[31] Rameau, G.A., Chiu, L.Y. and Ziff, E.B. (2003) NMDA Receptor Regulation of nNOS Phosphorylation and Induction of Neuron Death. Neurobiology of Aging, 24, 1123-1133.
http://dx.doi.org/10.1016/j.neurobiolaging.2003.07.002
[32] Nicoletti, F., Bockaert, J., Collingridge, G.L., Conn, P.J., Ferraguti, F., Schoepp, D.D., Wroblewski, J.T. and Pin, J.P. (2011) Metabotropic Glutamate Receptors: From the Workbench to the Bedside. Neuropharmacology, 60, 1017-1041.
http://dx.doi.org/10.1016/j.neuropharm.2010.10.022
[33] Kelly, A., Lynch, A., Vereker, E., Nolan, Y., Queenan, P., Whittaker, E., O’Neill, L.A. and Lynch, M.A. (2001) The Anti-Inflammatory Cytokine, Interleukin (IL)-10, Blocks the Inhibitory Effect of IL-1β on Long Term Potentiation. A Role for JNK. The Journal of Biological Chemistry, 276, 45564-45572.
http://dx.doi.org/10.1074/jbc.M108757200
[34] Traynelis, S.F., Hartley, M. and Heinemann, S.F. (1995) Control of Proton Sensitivity of the NMDA Receptor by RNA Splicing and Polyamines. Science, 268, 873-876.
http://dx.doi.org/10.1126/science.7754371
[35] Choi, Y.B., Tenneti, L., Le, D.A., Ortiz, J., Bai, G., Chen, H.S. and Lipton, S.A. (2000) Molecular Basis of NMDA Receptor-Coupled Ion Channel Modulation by S-Nitrosylation. Nature Neuroscience, 3, 15-21.
http://dx.doi.org/10.1038/71090
[36] Knoblach, S.M. and Faden, A.I. (1998) Interleukin-10 Improves Outcome and Alters Proinflammatory Cytokine Expression after Experimental Traumatic Brain Injury. Experimental Neurology, 153, 143-151.
http://dx.doi.org/10.1006/exnr.1998.6877
[37] Sharma, S., Yang, B., Xi, X., Grotta, J.C., Aronowski, J. and Savitz, S.I. (2011) IL-10 Directly Protects Cortical Neurons by Activating PI-3 Kinase and STAT-3 Pathways. Brain Research, 1373, 189-194.
http://dx.doi.org/10.1089/neu.2012.2651
[38] Thompson, C.D., Zurko, J.C., Hanna, B.F., Hellenbrand, D.J. and Hanna, A. (2013) The Therapeutic Role of Interleukin-10 after Spinal Cord Injury. Journal of Neurotrauma, 30, 1311-1324.
http://dx.doi.org/10.1089/neu.2012.2651
[39] Perez-Asensio, F.J., Perpiná, U., Planas, A.M. and Pozas, E. (2013) Interleukin-10 Regulates Progenitor Differentiation and Modulates Neurogenesis in Adult Brain. Journal of Cell Science, 126, 4208-4219.
http://dx.doi.org/10.1242/jcs.127803
[40] Steinert, J.R., Chernova, T. and Forsythe, I.D. (2010) Nitric Oxide Signaling in Brain Function, Dysfunction, and Dementia. The Neuroscientist, 16, 435-452.
http://dx.doi.org/10.1177/1073858410366481
[41] Bhardwaj, A., Northington, F.J., Martin, L.J., Hanley, D.F., Traystma, R.J. and Koehler, R.C. (1997) Characterization of Metabotropic Glutamate Receptor-Mediated Nitric Oxide Production in Vivo. Journal of Cerebral Blood Flow & Metabolism, 17, 153-160.
[42] Llansola, M. and Felipo, V. (2010) Metabotropic Glutamate Receptor 5, but Not 1, Modulates NMDA Receptor-Mediated Activation of Neuronal Nitric Oxide Synthase. Neurochemistry International, 56, 535-554.
http://dx.doi.org/10.1016/j.neuint.2009.12.016
[43] Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J. and Dingledine, R. (2010) Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 62, 405-496.
http://dx.doi.org/10.1124/pr.109.002451
[44] Reynolds, I.J. and Miller, R.J. (1989) Ifenprodil Is a Novel Type of NMDA Receptor Antagonist: Interaction with Polyamines. Molecular Pharmacology, 36, 758-765.
[45] Sharma, T.A. and Reynolds, I.J. (1999) Characterization of the Effects of Polyamines on [125I]MK-801 Binding to Recombinant N-Methyl-D-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 289, 1041-1047.
[46] O’Shea, J.J., Pesu, M., Borie, D.C. and Changelian, P.S. (2004) A New Modality for Immunosuppression: Targeting the JAK/STAT Pathway. Nature Reviews Drug Discovery, 3, 555-564.
http://dx.doi.org/10.1038/nrd1441
[47] Sica, A. and Bronte, V. (2007) Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development. Journal of Clinical Investigation, 117, 1155-1166.
http://dx.doi.org/10.1172/JCI31422
[48] Gotoh, T., Chowdhury, S., Takiguchi, M. and Mori, M. (1997) The Glucocorticoid-Responsive Gene Cascade. Activation of the Rat Arginase Gene through Induction of C/EBPβ. The Journal of Biological Chemistry, 272, 3694-3698.
http://dx.doi.org/10.1074/jbc.272.6.3694
[49] Oliva Jr., A.A., Kang, Y., Sanchez-Molano, J., Furones, C. and Atkins, C.M. (2012) STAT3 Signaling after Brain Injury. Journal of Neurochemistry, 120, 710-720.
http://dx.doi.org/10.1111/j.1471-4159.2011.07610.x
[50] Ramji, D.P. and Foka, P. (2002) CCAAT/Enhancer-Binding Proteins: Structure, Function and Regulation. Biochemical Journal, 365, 561-575.
[51] Crepaldi, L., Lackner, C., Corti, C. and Ferraguti, F. (2007) Transcriptional Activators and Repressors for the Neuron-specific Expression of a Metabotropic Glutamate Receptor. The Journal of Biological Chemistry, 282, 17877-17889.
http://dx.doi.org/10.1074/jbc.M700149200
[52] Kfoury, N. and Kapatos, G. (2009) Identification of Neuronal Target Genes for CCAAT/Enhancer Binding Proteins. Molecular and Cellular Neuroscience, 40, 313-327.
http://dx.doi.org/10.1016/j.mcn.2008.11.004
[53] Ferraguti, F., Crepaldi, L. and Nicoletti, F. (2008) Metabotropic Glutamate 1 Receptor: Current Concepts and Perspectives. Pharmacological Reviews, 60, 536-581.
http://dx.doi.org/10.1124/pr.108.000166                    eww141110lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...