跳至主要内容

Fermentative Production of Mycelial Chitosan from Zygomycetes: Media Optimization and Physico-Chemical Characterization

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51142#.VFbfr2fHRK0

The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 was found to produce the highest mycelial chitosan. The one-factor-at-a-time method was adopted to investigate the effect of batch time, environmental factors (i.e. initial pH and temperature) and medium components (i.e. carbon and nitrogen) on the yield of mycelial chitosan. Among these variables, the optimal condition to increase in yield of mycelial chitosan was found to be batch time (72 h), pH (5.5), temperature (30°C), carbon source (glucose) and nitrogen source (tryptone and yeast extract). Subsequently, a three-level Box– Behnken factorial design was employed combining with response surface methodology (RSM) to maximise yield of mycelial chitosan by determining optimal concentrations and investigating the interactive effects of the most significant media components (i.e. carbon and nitrogen sources). The optimum value of parameters obtained through RSM was glucose (1.58%), tryptone (1.61%) and yeast extract (1.11%). There was an increase in mycelial chitosan yield after media optimization by one-factor-at-a-time and statistical analysis from 683 mg/L to 1 g/L. Mycelial chitosan was characterized for total glucosamine content (80.68%), degree of deacetylation (DD) (79.89%), molecular weight (8.07 × 104 Da) and, viscosity (73.22 ml/g). The results of this study demonstrated that fungi are promising alternative sources of chitosan with high DD and high purity.
Cite this paper
Vaingankar, P. and Juvekar, A. (2014) Fermentative Production of Mycelial Chitosan from Zygomycetes: Media Optimization and Physico-Chemical Characterization. Advances in Bioscience and Biotechnology, 5, 940-956. doi: 10.4236/abb.2014.512108
 

[1] No, H.K., Meyers, S.P. and Lee, K.S. (1989) Isolation and Characterization of Chitin from Crawfish Shell Waste. Journal of Agricultural and Food Chemistry, 37, 575-579.
http://dx.doi.org/10.1021/jf00087a001
[2] Shahidi, F., Arachch, J.K.V. and Jeon, Y.J. (1999) Food Applications of Chitin and Chitosans. Trends in Food Science Technology, 10, 37-51.
http://dx.doi.org/10.1016/S0924-2244(99)00017-5
[3] Kumar, M.N.V. (2000) A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers, 46, 1-27.
http://dx.doi.org/10.1016/S1381-5148(00)00038-9
[4] Dodane, V. and Vilivalam, V.D. (1998) Pharmaceutical Applications of Chitosan. Pharmaceutical Science Technology Today, 1, 246-253.
http://dx.doi.org/10.1016/S1461-5347(98)00059-5
[5] Knorr, D. (1991) Recovery and Utilization of Chitin and Chitosan in Food Processing Waste Management. Food Technology, 45, 114-122.
[6] Wang, W., Du, Y., Qiu, Y., Wang, X., Hu, Y., Yang, J., Cai, J. and Kennedy, J.F. (2008) A New Green Technology for Direct Production of Low Molecular Weight Chitosan. Carbohydrate Polymers, 74, 127-132.
http://dx.doi.org/10.1016/j.carbpol.2008.01.025
[7] Bartniki-Garcia, S. (1968) Cell Wall Chemistry, Morphogenesis and Taxonomy of Fungi. Annual Review of Microbiology, 22, 87-108.
http://dx.doi.org/10.1146/annurev.mi.22.100168.000511
[8] Kleekayai, T. and Suntornsuk, W. (2011) Production and Characterization of Chitosan Obtained from Rhizopus oryzae Grown on Potato Chip Processing Waste. World Journal of Microbiology and Biotechnology, 27, 1145-1154.
http://dx.doi.org/10.1007/s11274-010-0561-x
[9] Cardoso, A., Lins, C.I.M., Santos, E.R., Freitas Silva, M.C. and Campos-Takaki, G.M. (2012) Microbial Enhance of Chitosan Production by Rhizopus arrhizus Using Agroindustrial Substrates. Molecules, 17, 4904-4914.
http://dx.doi.org/10.3390/molecules17054904
[10] Santos, E.R., Freitas Silva, M.C., Souza, P.M., Silva, A.C., Paiva, S.C., Albuquerque, C.D.C., Nascimento, A.E., Okada, K. and Campos-Takaki, G.M. (2013) Enhancement of Cunninghamella elegans ucp/wfcc 0542 Biomass and Chitosan with Amino Acid Supply. Molecules, 18, 10095-10107.
http://dx.doi.org/10.3390/molecules180910095
[11] New, N., Stevens, W.F., Tokura, S. and Tamura, H. (2008) Characterization of Chitosan and Chitosan-Glucan Complex Extracted from Cell Wall of Fungus Gongronella butleri USDB 0201 by Enzymatic Method. Enzyme and Microbial Technology, 42, 242-251.
http://dx.doi.org/10.1016/j.enzmictec.2007.10.001
[12] Tan, S.C., Tan, T.K., Wong, S.M. and Khor, E. (1996) The Chitosan Yield of Zygomycetes at Their Optimum Harvesting Time. Carbohydrate Polymers, 30, 239-242.
http://dx.doi.org/10.1016/S0144-8617(96)00052-5
[13] Arcidiacono, S. and Kaplan, D.L. (1992) Molecular Weight Distribution of Chitosan Isolated from Mucor rouxii under Different Culture and Processing Conditions. Biotechnology and Bioengineering, 39, 281-286.
http://dx.doi.org/10.1002/bit.260390305
[14] Crestini, C., Kovac, B. and Giovannozzi-Sermanni, G. (1996) Production and Isolation of Chitosan by Submerged and Solid-State Fermentation from Lentinus edodes. Biotechnology and Bioengineering, 50, 207-210.
http://dx.doi.org/10.1002/bit.260500202
[15] Jaworska, M.M. and Konieczna, E. (2001) The Influence of Supplemental Components in Nutrient Medium on Chitosan Formation by Fungus Absidia orchidis. Applied Microbiology and Biotechnology, 56, 220-224.
http://dx.doi.org/10.1007/s002530000591
[16] New, N. and Stevens, W.F. (2002) Chitosan Isolation from the Chitosan-Glucan Complex of Fungal Cell Wall Using Amylolytic Enzymes. Biotechnology Letters, 24, 1461-1464.
http://dx.doi.org/10.1023/A:1019898715518
[17] Box, G.E.P. and Behnken, D.W. (1960) Some New Three Level Designs for the Study of Quantitative Variables. Technometrics, 2, 455-475.
http://dx.doi.org/10.1080/00401706.1960.10489912
[18] Synowiecki, J. and Ali-Khateeb, N.A.A.Q. (1997) Mycelia of Mucor rouxii as a Source of Chitin and Chitosan. Food Chemistry, 60, 605-610.
http://dx.doi.org/10.1016/S0308-8146(97)00039-3
[19] McGahren, W.J., Perkinson, G.A., Growich, J.A., Leese, R.A. and Ellestad, G.A. (1984) Chitosan by Fermentation. Process Biochemistry, 19, 88-90.
[20] Tsuji, A., Kinoshita, T. and Hoshino, M. (1969) Analytical Chemical Studies on Amino Sugars. II Determination of Hexosamines Using 3-Methyl-2-Benzothiazolone Hydrazone Hydrochloride. Chemical and Pharmaceutical Bulletin, 17, 1505-1510.
http://dx.doi.org/10.1248/cpb.17.1505
[21] Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J. and Stepnowski, P. (2010) Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs, 8, 1567-1636.
http://dx.doi.org/10.3390/md8051567
[22] Khan, T.A., Peh, K.K. and Ch’ng, H.S. (2002) Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. Journal of Pharmacy and Pharmaceutical Sciences, 5, 205-212.
[23] Baxter, A., Dillon, M., Taylor, K.D.A. and Roberts, G.A.F. (1992) Improved Method for i.r. Determination of the Degree of N-Acetylation of Chitosan. International Journal of Biological Macromolecules, 14, 166-169.
http://dx.doi.org/10.1016/S0141-8130(05)80007-8
[24] Mao, S., Shuai, X., Unger, F., Simona, M., Bi, D. and Kissel, T. (2004) The Depolymerization of Chitosan: Effects on Physicochemical and Biological Properties. International Journal of Pharmaceutics, 281, 45-54.
http://dx.doi.org/10.1016/j.ijpharm.2004.05.019
[25] Kasaai, M.R., Arul, J. and Charlet, G. (2000) Intrinsic Viscosity-Molecular Weight Relationship for Chitosan. Journal of Polymer Science Part B: Polymer Physics, 38, 2591-2598.
http://dx.doi.org/10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6
[26] Rane, K.D. and Hoover, D.G. (1993) Production of Chitosan by Fungi. Food Biotechnology, 7, 11-33.
http://dx.doi.org/10.1080/08905439309549843
[27] Yokoi, H., Aratake, T., Nishio, S., Hirose, J., Hayashi, S. and Takasaki, Y. (1998) Chitosan Production from Shochu Distillery Waste Water by Funguses. Journal of Fermentation and Bioengineering, 85, 246-249.
http://dx.doi.org/10.1016/S0922-338X(97)86777-3
[28] Muzzarelli, R.A.A., Ilari, P., Tarsi, R., Dubini, B. and Xia, W.S. (1994) Chitosan from Absidia coerulea. Carbohydrate Polymers, 25, 45-50.
http://dx.doi.org/10.1016/0144-8617(94)90161-9
[29] New, N. and Stevens, W.F. (2004) Effect of Urea on Fungal Chitosan Production in Solid Substrate Fermentation. Process Biochemistry, 39, 1639-1642.
http://dx.doi.org/10.1016/S0032-9592(03)00301-7
[30] Murthy, M.S.R.C., Swaminathan, T., Rakshit, S.K. and Kosugi, Y. (2000) Statistical Optimization of Lipase Catalyzed Hydrolysis of Methyloleate by Response Surface Methodology. Bioprocess Engineering, 22, 35-39.
http://dx.doi.org/10.1007/PL00009097
[31] Sharma, P., Singh, L. and Dilbaghi, N. (2009) Optimization of Process Variables for Decolorization of Disperses Yellow 211 by Bacillus subtilis Using Box-Beknken Design. Journal of Hazardous Materials, 169, 1024-1029.
http://dx.doi.org/10.1016/j.jhazmat.2008.08.104
[32] Haaland, P.D. (1989) Experimental Design in Biotechnology. Marcel Dekker, New York.
[33] Sen, R. and Swaminathan, T. (2004) Response Surface Modeling and Optimization to Elucidate and Analyze the Effects of Inoculums Age and Size on Surfactin Production. Biochemical Engineering Journal, 21, 141-148.
http://dx.doi.org/10.1016/j.bej.2004.06.006
[34] Yetilmezsoy, K., Demirel, S. and Vanderbei, R.J. (2009) Response Surface Modeling of Pb(II) Removal from Aqueous Solution by Pistacia vera L.: Box-Behnken Experimental Design. Journal of Hazardous Materials, 171, 551-562.
http://dx.doi.org/10.1016/j.jhazmat.2009.06.035
[35] Miyoshi, H., Shimura, K., Watanabe, K. and Onodera, K. (1992) Characterization of Some Fungal Chitosans. Bioscience, Biotechnology, and Biochemistry, 56, 1901-1905.
http://dx.doi.org/10.1271/bbb.56.1901
[36] Pochanavanich, P. and Suntornsuk, W. (2002) Fungal Chitosan Production and Its Characterization. Letters in Applied Microbiology, 35, 17-21.
http://dx.doi.org/10.1046/j.1472-765X.2002.01118.x
[37] No, H.K., Meyers, S.P., Prinyawiwatkul, W. and Xu, Z. (2007) Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. Journal of Food Science, 72, 87-100.
http://dx.doi.org/10.1111/j.1750-3841.2007.00383.x
[38] Li, Q., Dunn, E.T., Grandmaison, E.W. and Goosen, M.F.A. (1992) Applications and Properties of Chitosan. Journal of Bioactive and Compatible Polymers, 7, 370-397.
http://dx.doi.org/10.1177/088391159200700406            eww141103lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...