Effects of Imipramine and Lithium on the Expression of Hippocampal Wnt 3a and Cyclin D1 in ACTH-Treated Rats
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51399#.VGlU72fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51399#.VGlU72fHRK0
Author(s)
We have shown previously that chronic administration
of adrenocorticotropic hormone (ACTH) causes a significant decrease in
hippocampal cell proliferation and neurogenesis. This effect in rats
treated chronically with ACTH was not influenced by the chronic
administration of imipramine, but was reversed by coadministration of
imipramine and lithium. The present study was undertaken to further
characterize the mechanism underlying the effect of imipramine and
lithium on hippocampal cell proliferation and neurogenesis, by
investigating the effects of treatment on the expression of
brain-derived neurotrophic factor (BDNF), total cyclic adenosine
monophosphate response element-binding protein (CREB), and
phosphorylated CREB (pCREB) of the CREB signaling system, as well as Wnt
3a and cyclin D1 of the Wnt signaling pathway in the hippocampus of
saline- and ACTH-treated rats. ACTH treatment significantly decreased
the expression of cyclin D1. Treatment with imipramine and lithium
increased the expression of cyclin D1 in ACTH-treated rats. However, the
expression of BDNF, CREB, pCREB, and Wnt 3a did not change in either
saline-treated or ACTH-treated rats. These findings suggest that the
antidepressant effect of imipramine and lithium in
ACTH-treatment-resistant rats may be attributed, at least in part, to an
enhancement of cyclin D1 expression.
Cite this paper
Kitamura, Y. , Hayashi, H. , Onoue, Y. , Kuwatsuka,
K. , Miyake, A. , Miyazaki, I. , Asanuma, M. and Sendo, T. (2014)
Effects of Imipramine and Lithium on the Expression of Hippocampal Wnt
3a and Cyclin D1 in ACTH-Treated Rats. Journal of Behavioral and Brain Science, 4, 483-490. doi: 10.4236/jbbs.2014.411048.
[1] |
Kitamura, Y., Araki, H. and
Gomita, Y. (2002) Influence of ACTH on the Effects of Imipramine,
Desipramine and Lithium on Duration of Immobility of Rats in the Forced
Swim Test. Pharmacology, Biochemistry and Behavior, 71, 63-69. http://dx.doi.org/10.1016/S0091-3057(01)00625-6 |
[2] | Fink, M. (1990) How Does Convulsive Therapy Work? Neuropsychopharmacology, 3, 73-82. |
[3] |
Li, B., Suemaru, K., Cui, R.,
Kitamura, Y., Gomita, Y. and Araki, H. (2006) Repeated Electroconvulsive
Stimuli Increase Brain-Derived Neurotrophic Factor in ACTH-Treated
Rats. European Journal of Pharmacology, 529, 114-121. http://dx.doi.org/10.1016/j.ejphar.2005.11.009 |
[4] |
Fuchs, E., Czeh, B. and Flugge,
G. (2004) Examining Novel Concepts of the Pathophysiology of Depression
in the Chronic Psychosocial Stress Paradigm in Tree Shrews. Behavioural
Pharmacology, 15, 315-325. http://dx.doi.org/10.1097/00008877-200409000-00003 |
[5] |
Malberg, J.E. and Duman, R.S.
(2003) Cell Proliferation in Adult Hippocampus Is Decreased by
Inescapable Stress: Reversal by Fluoxetine Treatment.
Neuropsycho-pharmacology, 28, 1562-1571. http://dx.doi.org/10.1038/sj.npp.1300234 |
[6] |
Kodama, M., Fujioka, T. and
Duman, R.S. (2004) Chronic Olanzapine or Fluoxetine Administration
Increases Cell Proliferation in Hippocampus and Prefrontal Cortex of
Adult Rat. Biological Psychiatry, 56, 570-580. http://dx.doi.org/10.1016/j.biopsych.2004.07.008 |
[7] |
Santarelli, L., Saxe, M., Gross,
C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J.,
Duman, R., Arancio, O., Belzung, C. and Hen, R. (2003) Requirement of
Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants.
Science, 301, 805-809. http://dx.doi.org/10.1126/science.1083328 |
[8] | Doi, M., Miyazaki, I., Nagamachi, T., Shinomiya, K., Matsunaga, H., Sendo, T., Kawasaki, H., Asanuma, M., Gomita, Y. and Kitamura, Y. (2010) Effects of Imipramine and Lithium on the Suppression of Cell Proliferation in the Dentate Gyrus of the Hippocampus in Adrenocorticotropic Hormone-Treated Rats. Acta Medica Okayama, 64, 219-223. |
[9] |
Kitamura, Y., Doi, M.,
Kuwatsuka, K., Onoue, Y., Miyazaki, I., Shinomiya, K., Koyama, T.,
Sendo, T., Kawasaki, H., Asanuma, M. and Gomita, Y. (2011) Chronic
Treatment with Imipramine and Lithium Increases Cell Proliferation in
the Hippocampus in Adrenocorticotropic Hormone-Treated Rats. Biological
and Pharmaceutical Bulletin, 34, 77-81. http://dx.doi.org/10.1248/bpb.34.77 |
[10] | Pencea, V., Bingaman, K.D., Wiegand, S.J. and Luskin, M.B. (2001) Infusion of Brain-Derived Neurotrophic Factor into the Lateral Ventricle of the Adult Rat Leads to New Neurons in the Parenchyma of the Striatum, Septum, Thalamus, and Hypothalamus. Journal of Neuroscience, 21, 6706-6717. |
[11] |
Schinder, A.F., Berninger, B.
and Poo, M. (2000) Postsynaptic Target Specificity of
Neurotrophin-Induced Presynaptic potentiation. Neuron, 25, 151-163. http://dx.doi.org/10.1016/S0896-6273(00)80879-X |
[12] |
Duman, R.S. and Monteggia, L.M.
(2006) A Neurotrophic Model for Stress-Related Mood Disorders.
Biological Psychiatry, 59, 1116-1127. http://dx.doi.org/10.1016/j.biopsych.2006.02.013 |
[13] |
Post, R.M. (2007) Role of BDNF
in Bipolar and Unipolar Disorder: Clinical and Theoretical Implications.
Journal of Psychiatric Research, 41, 979-990. http://dx.doi.org/10.1016/j.jpsychires.2006.09.009 |
[14] |
Kuipers, S.D., Trentani, A., van
der Zee, E.A. and den Boer, J.A. (2013) Chronic Stress-Induced Changes
in the Rat Brain: Role of Sex Differences and Effects of Long-Term
Tianeptine Treatment. Neuropharmacology, 75, 426-436. http://dx.doi.org/10.1016/j.neuropharm.2013.08.018 |
[15] |
Baldin, V., Lukas, J., Marcote,
M.J., Pagano, M. and Draetta, G. (1993) Cyclin D1 Is a Nuclear Protein
Required for Cell Cycle Progression in G1. Genes and Development, 7,
812-821. http://dx.doi.org/10.1101/gad.7.5.812 |
[16] | Matsushime, H., Quelle, D.E., Shurtleff, S.A., Shibuya, M., Sherr, C.J. and Kato, J.Y. (1994) D-Type Cyclin-Dependent Kinase Activity in Mammalian Cells. Molecular and Cellular Biology, 14, 2066-2076. |
[17] |
Meirmanov, S., Nakashima, M.,
Kondo, H., Matsufuji, R., Takamura, N., Ishigaki, K., Ito, M., Prouglo,
Y., Yamashita, S. and Sekine, I. (2003) Correlation of Cytoplasmic
Beta-Catenin and Cyclin D1 Overexpression during Thyroid Carcinogenesis
around Semipalatinsk Nuclear Test Site. Thyroid, 13, 537-545. http://dx.doi.org/10.1089/105072503322238791 |
[18] |
Nakashima, M., Meirmanov, S.,
Naruke, Y., Kondo, H., Saenko, V., Rogounovitch, T., Shimizu-Yoshida,
Y., Takamura, N., Namba, H., Ito, M., Abrosimov, A., Lushnikov, E.,
Roumiantsev, P., Tsyb, A., Yamashita, S. and Sekine, I. (2004) Cyclin D1
Overexpression in Thyroid Tumours from a Radio-Contaminated Area and
Its Correlation with Pin1 and Aberrant Beta-Catenin Expression. Journal
of Pathology, 202, 446-455. http://dx.doi.org/10.1002/path.1534 |
[19] |
Nelson, W.J. and Nusse, R.
(2004) Convergence of Wnt, Beta-Catenin, and Cadherin Pathways. Science,
303, 1483-1487. http://dx.doi.org/10.1126/science.1094291 |
[20] | Lee, S.M., Tole, S., Grove, E. and McMahon, A.P. (2000) A Local Wnt-3a Signal Is Required for Development of the Mammalian Hippocampus. Development, 127, 457-467. |
[21] |
Chen, A.C., Shin, K.H., Duman,
R.S. and Sanacora, G. (2001) ECS-Induced Mossy Fiber Sprouting and BDNF
Expression Are Attenuated by Ketamine Pretreatment. Journal of ECT, 17,
27-32. http://dx.doi.org/10.1097/00124509-200103000-00006 |
[22] |
Kuwatsuka, K., Hayashi, H.,
Onoue, Y., Miyazaki, I., Koyama, T., Asanuma, M., Kitamura, Y. and
Sendo, T. (2013) The Mechanisms of Electroconvulsive Stimuli in
BrdU-Positive Cells of the Dentate Gyrus in ACTH-Treated Rats. Journal
of Pharmacological Sciences, 122, 34-41. http://dx.doi.org/10.1254/jphs.13015FP |
[23] |
Shtutman, M., Zhurinsky, J.,
Simcha, I., Albanese, C., D’Amico, M., Pestell, R. and Ben-Ze’ev, A.
(1999) The Cyclin D1 Gene Is a Target of the Beta-Catenin/LEF-1 Pathway.
Proceedings of the National Academy of Sciences of the United States of
America, 96, 5522-5527. http://dx.doi.org/10.1073/pnas.96.10.5522 |
[24] |
Tetsu, O. and McCormick, F.
(1999) Beta-Catenin Regulates Expression of Cyclin D1 in Colon Carcinoma
Cells. Nature, 398, 422-426. http://dx.doi.org/10.1038/18884 |
[25] | Kumar, D.U. and Devaraj, H. (2012) Expression of Wnt 3a, Beta-Catenin, Cyclin D1 and PCNA in Mouse Dentate Gyrus Subgranular Zone (SGZ): A Possible Role of Wnt Pathway in SGZ Neural Stem Cell Proliferation. Folia Biologica, 58, 115-120. |
[26] |
Gould, T.D., Einat, H., Bhat, R.
and Manji, H.K. (2004) AR-A014418, a Selective GSK-3 Inhibitor,
Produces Antidepressant-Like Effects in the Forced Swim Test.
International Journal of Neuropsychopharmacology, 7, 387-390. http://dx.doi.org/10.1017/S1461145704004535 |
[27] |
Jope, R.S. and Johnson, G.V.
(2004) The Glamour and Gloom of Glycogen Synthase Kinase-3. Trends in
Biochemical Sciences, 29, 95-102. http://dx.doi.org/10.1016/j.tibs.2003.12.004 |
[28] |
Takahashi-Yanaga, F. and
Sasaguri, T. (2007) The Wnt/Beta-Catenin Signaling Pathway as a Target
in Drug Discovery. Journal of Pharmacological Sciences, 104, 293-302. http://dx.doi.org/10.1254/jphs.CR0070024 |
评论
发表评论