Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51606#.VHKBc2fHRK1
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51606#.VHKBc2fHRK1
Author(s)
TiO2 nanoparticles were produced from a
commercial anatase powder through a wet milling process. The effect of
grinding intensity, which is directly dependent on the operating
parameters, was analyzed and the performance of polyethylene glycol
(PEG400) as a dispersing agent in the milling system was also tested.
The results showed that the processes using polyethylene glycol achieved
a greater fragmentation of particles. This could be observed in the
histograms made from SEM images taken from samples of powders from the
processes, whose populations reached an average size of approximately 90
nm. The TiO2 powders obtained by milling were then used in
the manufacture of dye-sensitized solar cells. It was verified that the
powders produced using the dispersing agent achieved the greatest
efficiencies, the highest being 0.94%. The current produced by the cells
proved to be very low compared to the voltages obtained which gave
acceptable values up to 0.81 V.
KEYWORDS
Cite this paper
Huamán, A. , Quintana, M. , Rodriguez, J. and Estrada, W. (2014) Dye-Sensitized Solar Cells Based on TiO2 Nanoparticles Modified by Wet Milling. Energy and Power Engineering, 6, 473-480. doi: 10.4236/epe.2014.613040.
[1] | Raab, C., Simkó, M. and Fiedeler, U. (2011) Production of Nanoparticles and Nanomaterials. NanoTrust-Dossier, 6, 1-4. |
[2] |
Stenger, F., Mende, S.,
Schwedes, J. and Peukert, W. (2005) Nanomilling in Stirred Media Mills.
Chemical Engineering Science, 60, 4557-4565. http://dx.doi.org/10.1016/j.ces.2005.02.057 |
[3] |
Bilgili, E., Hamey, R. and
Scarlett, B. (2006) Nano-Milling of Pigment Agglomerates Using a Wet
Stirred Media Mill: Elucidation of the Kinetics and Breakage Mechanisms.
Chemical Engineering Science, 61, 149-157.
http://dx.doi.org/10.1016/j.ces.2004.11.063 |
[4] |
Bel Fadhel, H. and Frances, C.
(2001) Wet batch Grinding of Alumina Hydrate in a Stirred Bead Mill.
Powder Technology, 119, 257-268. http://dx.doi.org/10.1016/S0032-5910(01)00266-2 |
[5] |
He, M., Wang, Y. and Forssberg,
E. (2006) Parameter Effects on Wet Ultrafine Grinding of Limestone
through Slurry Rheology in a Stirred Media Mill. Powder Technology, 161,
10-21. http://dx.doi.org/10.1016/j.powtec.2005.08.026 |
[6] |
Suryanarayana, C. (2001)
Mechanical Alloying and Milling. Progress in Materials Science, 46,
1-184.
http://dx.doi.org/10.1016/S0079-6425(99)00010-9 |
[7] | Estrada, W., Solís, J. and Rodriguez, J. (2009) Recubrimientos delgados obtenidos por procedimientos físico-químicos. Editorial universitaria de la Universidad Nacional de Ingeniería, Lima. |
[8] |
Diebold, U. (2003) The Surface
Science of Titanium Dioxide. Surface Science Reports, 48, 53-229.
http://dx.doi.org/10.1016/S0167-5729(02)00100-0 |
[9] | Hagfeldt, A., Cappel, U.B., Boschloo, G. and Sun, L. (2012) Dye-Sensitized Photoelectrochemical Cells: Practical Handbook of Photovoltaics. Elsevier Science Ltd., Berlin, 477-542. |
[10] |
Bid, S. and Pradhan, S.K. (2004)
Characterization of Crystalline Structure of Ball-Milled Nano
Ni-Zn-Ferrite by Rietveld Method. Materials Chemistry and Physics, 84,
291-301. http://dx.doi.org/10.1016/j.matchemphys.2003.08.012 eww141124lx |
评论
发表评论