跳至主要内容

Consequences of Non-Uniformity in the Stoichiometry of Component Fractions within One and Two Loops Models of α-Helical Peptides

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51403#.VGlTnGfHRK0

A 3-D electrostatic density map generated using the Wavefront Topology System and Finite Element Method clearly demonstrates the non-uniformity and periodicity present in even a single loop of an α-helix. The four dihedral angles (N-C*-C-N, C*-C-N-C*, and C-N-C*-C) fully define a helical shape independent of its length: the three dihedral angles, φ = -33.5°, ω = 177.3°, and Ψ = -69.4°, generate the precise (and identical) redundancy in a one loop (or longer) α-helical shape (pitch = 1.59 /residue; r = 2.25 ). Nevertheless the pattern of dihedral angles within an 11 and a 22-peptide backbone atom sequence cannot be distributed evenly because the stoichiometry in fraction of four atoms never divides evenly into 11 or 22 backbone atoms. Thus, three sequential sets of 11 backbone atoms in an α-helix will have a discretely different chemical formula and correspondingly different combinations of molecular forces depending upon the assigned starting atom in an 11-step sequence. We propose that the unit cell of one loop of an α-helix occurs in the peptide backbone sequence C-(N-C*-C)3-N which contains an odd number of C* plus even number of amide groups. A two-loop pattern (C*-C-N)7-C* contains an even number of C* atoms plus an odd number of amide groups. Dividing the two-loop pattern into two equal lengths, one fraction will have an extra half amide (N-H) and the other fraction will have an extra half amide C=O, i.e., the stoichiometry of each half will be different. Also, since the length of N-C*-C-N, C*-C-N-C*, and C-N-C*-C are unequal, the summation of the number of each in any fraction of n loops of an α-helix in sequence will always have unequal length, depending upon the starting atom (N, C*, or C).
Cite this paper
Schmidt, W. , Hapeman, C. , Wachira, J. and Thomas, C. (2014) Consequences of Non-Uniformity in the Stoichiometry of Component Fractions within One and Two Loops Models of α-Helical Peptides. Journal of Biophysical Chemistry, 5, 125-133. doi: 10.4236/jbpc.2014.54014
 

[1] Schmidt, W.F. and Thomas, C.G. (2012) More Precise Model of α-Helix and Transmembrane α-Helical Peptide Backbone Structure. Journal of Biophysical Chemistry, 3, 295-303.
http://dx.doi.org/10.4236/jbpc.2012.34036
[2] Thomas, C.G. (2013) The Wavefront Topology System and Finite Element Method Applied to Engineering Visualization. Morgan State University, Baltimore, 160 p.
[3] Meskers, A.J.H., Voigt, D. and Spronck, J.W. (2013) Relative Optical Wavefront Measurement in Displacement Measuring Interferometer Systems with Sub-nm Precision. Optics Express, 21, 1-12.
http://dx.doi.org/10.1364/OE.21.017920
[4] Barlow, D.J. and Thornton, J.M. (1988) Helix Geometry in Proteins. Journal Molecular Biology, 201, 601-619.
[5] Harper, E.T. and Rose, G.D. (1993) Helix Stop Signals in Proteins and Peptides: The Capping Box. Biochemistry, 32, 7605-7609.
http://dx.doi.org/10.1012/bi00081aoo1
[6] Kumar, S. and Bansal, M. (1998) Dissecting α-Helices: Position-Specific Analysis of Alpha-Helices in Globular Proteins. Proteins, 31, 460-476.
[7] Olivella, M. Deupi, X., Govaerts, C. and Pardo, L. (2002) Influence of the Environment in the Conformation of α-Helices Studied by Protein Database Search and Molecular Dynamics Simulations. Biophysical Journal, 82, 3207-3213.
http://dx.doi.org/10.1016/S0006-3495(02)75663-4
[8] Maiti, N.C., Apetri, M.M., Zagorski, M.G., Carey, P.R. and Anderson, V.E. (2004) Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins: α-Synuclein. Journal of American Chemical Society, 126, 2399-2408.
http://dx.doi.org/10.1012/ja0356176
[9] Guo, Z., Kraka, E. and Cremer, D. (2013) Description of Local and Global Shape Properties of Protein Helices. Journal of Molecular Modeling, 19, 2901-2911.
http://dx.doi.org/10.1007/s00894-013-1819-7.
[10] Eisenberg, D. (2003) The Discovery of the α-Helix and β-Sheet, the Principal Structural Features of Proteins. Proceedings of the National Academy of Sciences USA, 100, 11207-11210.
[11] Bishop, D.M. (1973) Group Theory and Chemistry. Dover Publications, New York, 300 p.
[12] Hypercube, Inc. (2007) HyperChem 8.0 for Windows Molecular Modeling Systems. Gainsville.
[13] Hayward, S., Leader, D.P., Al-Shubailly, F. and Milner-White, E.J. (2014) Rings and Ribbons in Protein Structures: Characterization Using Helical Parameters and Ramachandran Plots for Repeating Dipeptides. Proteins: Structure, Function, and Bioinformatics, 82, 230-239.
http://dx.doi.org/10.1002/prot.24357
[14] Uesake, A., Ueda, M., Makino, A., Imai, T., Sugiyama, J. and Kimura, S. (2014) Morphology Control between Twisted Ribbon, Helical Ribbon, and Nanotube Self-Assembies with His-Containing Helical Peptides in Response to pH Change. Langmuir, 30, 1022-1028.
http://dx.doi.org/10.1021/la404784e
[15] Hayward, S. and Collins, J.F. (1992) Limits on α-Helical Prediction with Neural Network Models. Proteins, 14, 372-381.
http://dx.doi.org/10.1002/prot.340140306
[16] Albrecht, B., Grant, G.H., Sisu, C. and Richards, W.G. (2008) Classification of Proteins Based on Similarity of Two-Dimensional Maps. Biophysical Chemistry, 138, 11-22.
http://dx.doi.org/10.1016/j.bpc.2008.08.004
[17] Cantoni, V., Ferone, A., Ozbudak, O. and Petrosino, A. (2013) Protein Motifs Retrieval by SS Terns Occurrences. Pattern Recognition Letters, 34, 559-563.
http://dx.doi.org/10.1016/j.patrec.2012.12.003
[18] Ho, B.K. and Brasseur, R. (2005) The Ramachandran Plot of Glycine and Pre-Proline. BMC Structural Biology, 5, 14-29.
http://dx.doi.org/10.1186/1472-6807-5-14
[19] Kachlishvili, K. and Brenna, J.T. (2013) Steric Effects in the Interaction between Transmembrane Proteins and Polyunsaturated Phospholipids. Journal of Biological Physics and Chemistry, 13, 36-44.
http://dx.doi.org/10.4024/33KA12A.jbpc.13.01                eww141117lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...