跳至主要内容

Comparative Analysis of Rigid PVC Foam Reinforced with Class C and Class F Fly Ash

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51164#.VFgkamfHRK0

Fly ash particles are usually spherical and based on their chemical composition; they are categorized into two classes: C and F. This study compares the microstructural, mechanical and thermal properties of extruded rigid PVC foam composites reinforced with class C and class F fly ash. The mechanical properties: such as tensile and flexural strength of composites containing class C fly ash were superior to the composites containing class F fly ash particles. Composites containing 6 phr class C fly ash showed a 24% improvement in the tensile strength in comparison to a mere 0.5% increase in composites reinforced with class F fly ash. Similarly, the addition of 6 phr of class F fly ash to the PVC foam matrix resulted in a 5.74% decrease in the flexural strength, while incorporating the same amount of class C fly ash led to a 95% increase in flexural strength. The impact strength of the composites decreased as the amount of either type of fly ash increased in the composites indicating that fly ash particles improve the rigidity of the PVC foam composites. No significant changes were observed in the thermal properties of the composites containing either type of fly ash particles. However, the thermo-mechanical properties measured by DMA indicated a steep increase in the viscoelastic properties of composites reinforced with class C flyash. The microstructural properties studied by Scanning Electron Microscopy (SEM) confirmed that fly ash particles were mechanically interlocked in the PVC matrix with good interfacial interaction with the matrix. However, particle agglomeration and debonding was observed in composites reinforced with higher amounts of fly ash.
Cite this paper
Khoshnoud, P. , Gunashekar, S. , Jamel, M. and Abu-Zahra, N. (2014) Comparative Analysis of Rigid PVC Foam Reinforced with Class C and Class F Fly Ash. Journal of Minerals and Materials Characterization and Engineering, 2, 554-565. doi: 10.4236/jmmce.2014.26057.
 

[1] Sreekanth, M.S. and Bambole, V.A. (2009) Effect of Particle Size and Concentration of Flyash on Properties of Polyester Thermoplastic Elastomer Composites. Journal of Minerals & Materials Characterization & Engineering, 8, 237-248.
[2] Matsunaga, T., Kim, J.K., Hardcastle, S. and Rohatgi, P.K. (2002) Crystalinity and Selected Properties of Fly Ash Particles. Materials Science and Engineering, A325, 333-343.
http://dx.doi.org/10.1016/S0921-5093(01)01466-6
[3] White, S.C. and Case, E.D. (1990) Characterization of Fly Ash from Coal-Fired Power Plants. Journal of Materials Science, 25, 5215-5219. http://dx.doi.org/10.1007/BF00580153
[4] Gamage, N., Liyanage, K., Fragomeni, S. and Setunge, S. (in press) Overview of Different Types of Fly Ash and Their Use as a Building and Construction Material.
[5] Khairul, N.I., Kamarudin, H. and Mohd, S.I. (2007) Physical, Chemical, and Mineralogical Properties of Fly Ash. Journal of Nuclear Related Technology, 4, 47-51.
[6] Labella, M., Zeltmann, S.E., Shunmugasamy, V.C., Gupta, N. and Rohatgi, P.K. (2014) Mechanical and Thermal Properties of Fly Ash/Vinyl Ester Syntactic Foams. Fuel, 121, 240-249.
http://dx.doi.org/10.1016/j.fuel.2013.12.038
[7] Senapati, A.K., Bhatta, A., Mohanty, S., Mishra, P.C. and Routra, B.C. (2014) An Extensive Literature Review on the Usage of Fly Ash as a Reinforcing Agent for Different Matrices. International Journal of Innovation Science & Modern Engineering, 2, 4-9.
[8] Qiao, J., Amirkhizi, A.V., Schaaf, K. and Nemat-Nasser, S. (2011) Dynamic Mechanical Analysis of Fly Ash Filled Polyurea Elastomer. Journal of Engineering Materials & Technology, 133, 110161-110167. http://dx.doi.org/10.1115/1.4002650
[9] Anandhan, S., Sundar, S.M., Senthil, T., Mahendran, A.R. and Shibulal, G.S. (2012) Extruded Poly(ethylene-co-octene)/ Fly Ash Composites-Value Added Products from an Environmental Pollutant. Journal of Polymer Research, 19, 9840-9851.
http://dx.doi.org/10.1007/s10965-012-9840-6
[10] Deepthi, M.V., Sharma, M., Sailaja, R.R.N., Anantha, P., Sampathkumaran, P. and Seetharamu, S. (2010) Mechanical and Thermal Characteristics of High Density Polyethylene-Fly ash Cenospheres Composites. Materials & Design, 31, 2051-2060. http://dx.doi.org/10.1016/j.matdes.2009.10.014
[11] Doddamani, M.R. and Kulkarni, S.M. (2011) Dynamic Response of Fly Ash Reinforced Functionally Graded Rubber Composite Sandwiches—A Taguchi Approach. International Journal of Engineering, Science & Technology, 3, 166-182. http://dx.doi.org/10.4314/ijest.v3i1.67644
[12] Nath, D.C.D., Bandyopadhyay, S., Yu, A., Zeng, Q., Das, T., Blackburn, D. and White, C. (2009) Structure-Property Interface Correlation of Fly Ash-Isotactic Polypropylene Composites. Journal of Materials Science, 44, 6078-6089. http://dx.doi.org/10.1007/s10853-009-3839-3
[13] Nath, D.C.D., Bandyopadhyay, S., Yu, A., Blackburn, D. and White, C. (2010) Novel Observations on Kinetics of Nonisothermal Crystallization in Fly Ash Filled Isotactic-Polypropylene Composites. Journal of Applied Polymer Science, 115, 1510-1517. http://dx.doi.org/10.1002/app.31186
[14] Nath, D.C.D., Bandyopadhyay, S., Yu, A., Blackburn, D., White, C. and Varughese, S. (2010) Isothermal Crystallization Kinetics of Fly Ash Filled Iso-Polypropylene Composite- and a New Physical Approach. Journal of Thermal Analysis and Calorimetry, 99, 423-429.
http://dx.doi.org/10.1007/s10973-009-0408-6
[15] Nath, D.C.D., Bandyopadhyay, S., Boughton, P., Yu, A., Blackburn, D. and White, C. (2010) High-Strength Biodegradable Poly(vinyl Alcohol)/Fly Ash Composite Films. Journal of Applied Polymer Science, 117, 114-121.
[16] Nath, D.C.D., Bandyopadhyay, S., Yu, A., Blackburn, D. and White, C. (2010) High Strength Bio-Composite Films of Poly(vinyl Alcohol) Reinforced with Chemically Modified-Fly Ash. Journal of Materials Science, 45, 1354-1360. http://dx.doi.org/10.1007/s10853-009-4091-6
[17] Vijaykumar, H.K., Prashanth, M., Saheb, S. and Nayak, V. (2014) Experimental Investigation of the Tensile Strength and Compressive Strength of Fly Ash Core Sandwiched Composite Material. Journal of International Organization Scientific Research, 4, 1-10.
[18] Guhanathan, S. and Sarojadevi, M. (2004) Studies on Interface in Polyester/Fly-Ash Particulate Composites. Composite Interface, 11, 43-66. http://dx.doi.org/10.1163/156855404322681046
[19] Bishoyee, N., Dash, A., Mishra, A., Patra, S. and Mahapatra, S.S. (2010) A Grey-Based Taguchi Approach for Characterization of Erosive Wear Phenomenon of Glass-Polyester Fly Ash Filled Composites. Journal of Polymer Environment, 18, 177-187. http://dx.doi.org/10.1007/s10924-010-0196-x
[20] Usta, N. (2012) Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter. Journal of Applied Polymer Science, 124, 3372-3382. http://dx.doi.org/10.1002/app.35352
[21] Chow, J.D., Chai, W.L., Yeh, C.M. and Chuang, F.S. (2008) Recycling and Application Characteristics of Fly Ash from Municipal Solid Waste Incinerator Blended with Polyurethane Foam. Environmental Engineering Science, 25, 461-471. http://dx.doi.org/10.1089/ees.2006.0037
[22] Gupta, N., Woldesenbet, E. and Mensah, P. (2004) Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio. Composites Part A: Applied Science and Manufacturing, 35, 103-111. http://dx.doi.org/10.1016/j.compositesa.2003.08.001
[23] Rabinovich, E.B., Isner, J.D., Sidor, J.A. and Wiedl, D.J. (1997) Effect of Extrusion Conditions on Rigid PVC Foam. Journal of Vinyl & Additive Technology, 3, 210-215. http://dx.doi.org/10.1002/vnl.10193
[24] Thomas, N.L. (2004) Rigid PVC Foam, Formulating for Sustainability, Blowing Agent and Foaming Process.
[25] Eaves, D. (2004) Handbook of Polymer Foams.
[26] Thomas, N.L. (2004) Proceedings of 6th International Conference of Blowing Agent and Foaming Process. 10-11 May 2004, Hamburg.
[27] Das, A. and Satapathy, B.K. (2011) Structural, Thermal, Mechanical and Dynamic Mechanical Properties of Cenosphere Filled Polypropylene Composites. Materials & Design, 32, 1477-1484. http://dx.doi.org/10.1016/j.matdes.2010.08.041
[28] Lu, H., Purushothama, S., Hyatt, J., Pan, W.P., Riley, J.T., Lloyd, W.G., et al. (1996) Co-Firing High-Sulfur with Refuse-Derived Fuel. Thermochimica Acta, 284, 161-177. http://dx.doi.org/10.1016/0040-6031(96)02864-X
[29] Lodi, P.C. and Souza, B.B.D. (2012) Thermo-Gravimetric Analysis (TGA) after Different Exposures of High Density Polyethylene (HDPE) and Poly Vinyl Chloride (PVC) Geomembranes. Electronic Journal of Geotechnical Engineering, 17, 3339-3349.
[30] Iulianelli, C.G.V., Maciel, P.M.C. and Tavares, M.I.B. (2011) Preparation and Characterization of PVC/Natural Filler Composites. Macromolecular Symposia, 299, 227-233.
http://dx.doi.org/10.1002/masy.200900104
[31] Ráthy, I., Kuki, A., Borda, J., Deák, G., Zsuga, M., Marossy, K., et al. (2012) Preparation and Characterization of Poly(vinyl Chloride)-Continuous Carbon Fiber Composites. Journal of Applied Polymer Science, 124, 190-194. http://dx.doi.org/10.1002/app.33617
[32] Fillot, L.A., Hajji, P. and Gauthier, C. (2006) U-PVC Gelation Level Assessment, Part 2: Optimization of the Differential Scanning Calorimetry Technique. Journal of Vinyl & Additive Technology, 10, 108-114. http://dx.doi.org/10.1002/vnl.20078
[33] Cruz, J. and Gramann, P. (2009) Determining the Quality of a Failed PVC Pipe. Society of Plastic Engineers, 10, 1-3.
[34] Tomaszewska, J., Sterzynski, T. and Piszczek, K. (2004) Rigid Poly(vinyl Chloride) (PVC) Gelation in the Brabender Measuring Mixer. I. Equilibrium State Between Sliding, Breaking, and Gelation of PVC. Journal of Applied Polymer Science, 93, 966-971. http://dx.doi.org/10.1002/app.20519
[35] Piszczek, K., Tomaszewska, J. and Sterzynski, T. (2010) The Influence of Temperature of Poly(vinyl Chloride) Melt on the Equilibrium State of Gelation Process. Polymery, 55, 678-680.              eww141104lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...