跳至主要内容

Application of Electrical Resistivity Imaging in Investigating Groundwater Pollution in Sapele Area, Nigeria

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51120#.VFbT2GfHRK0

Sixty-four multi-electrode Lund imaging system coupled with ABEM SAS 4000 Terrameter was used for the electrical imaging of the study area. Wenner and Gradient arrays with 2 m minimum electrode spacing were employed which revealed resistivity changes in the vertical and horizontal directions along the survey lines. Earth imager software was employed for the processing and the iteration of the 2-D resistivity data. The subsurface is characterized with soil material with resistivity ranging from 42 - 15,000 Ohm-m, reflective of varying degree of conductivity associated with changing lithology and fluid type. Correlation with borehole data shows that the first 10 m is composed of laterite. While sand materials occupy 10 to about 60 m beneath the surface, with anomalously high resistivity 15,000 Ohm-m in most parts. These high resistivity formations can be attributed to the presence of hydrocarbon within the subsurface, which is an indication that shallow aquifer in the study area has been polluted. The water level in the study area is close to the surface, between 4 - 5 m. As a result of the high resistivity formations in most parts, deep wells of about 45 m are recommended after geophysical investigations.
Cite this paper
Uchegbulam, O. and Ayolabi, E. (2014) Application of Electrical Resistivity Imaging in Investigating Groundwater Pollution in Sapele Area, Nigeria. Journal of Water Resource and Protection, 6, 1369-1379. doi: 10.4236/jwarp.2014.614126
 

[1] Boulding, J.R. (1995) Practical Handbook of Soil, Vadose Zone, and Ground-water Contamination: Assessment, Prevention, and Remediation. Lewis Publishers, Boca Raton.
[2] Atakpo, E.A. and Ayolabi, E.A. (2008) Evaluation of Aquifer Vulnerability and the Protective Capacity in Some Oil Producing Communities of Western Niger Delta, Nigeria. The Environmentalist.
http://dx.doi.org/10.1007/s10669-008-9191-3
[3] Ekoriko, M. and Egwu, E. (1995) Neglect of Oil Communities Rage of the People. Newswatch Magazine, 18 December 1995, 13.
[4] DPR (1997) Department of Petroleum Resources. Annual Reports, Abuja, 191 p.
[5] Fetter, C.W. (1993) Contaminant Hydrogeology. Prentice-Hall, Inc., Upper Saddle River.
[6] Reynolds, J. (1998) An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ed., New York.
[7] Daily, W., Ramirez, A. and Johnson, R. (1998) Electrical Impedance Tomography of a Perchloroethelyne Release. Journal of Environmental and Engineering Geophysics, 2, 189-201.
[8] Goes, B.J.M. and Meekes, J.A.C. (2004) An Effective Electrode Configuration for the Detection of DNAPLs with Electrical Resistivity Tomography. Journal of Environmental and Engineering Geophysics, 9, 127-141.
http://dx.doi.org/10.4133/JEEG9.3.127
[9] Ezebuiro, P.E. (2004) A Review of Effect of Oil Pollution in West African Environment. Science and Nature, 5, 14-18.
[10] Uko, E.D, Ekine, A.S, Ebeniro, J.O. and Ofoegbu, C.O. (1992) Weathering Structure of the East-Central Niger Delta, Nigeria. Geophysics, 57, 1228-1233.
http://dx.doi.org/10.1190/1.1443338
[11] Doust, H. and Omatsola, E. (1990) Niger-Delta. In: Edwards, J.D. and Santogrossi, P.A., Eds., Divergent/Passive Margin Basins, AAPG Memoir 48, American Association of Petroleum Geologists, Tulsa, 239-248.
[12] Kulke, H. (1995) Nigeria. In: Kulke, H., Ed., Regional Petroleum Geology of the World, Part II, Africa, America, Australia and Antarctica, Gebruder Borntraeger, Berlin, 143-172.
[13] Hospers, J. (1965) Gravity Field and Structure of the Niger-Delta, Nigeria, West Africa. Geological Society of America Bulletin, 76, 407-422.
http://dx.doi.org/10.1130/0016-7606(1965)76[407:GFASOT]2.0.CO;2
[14] Short, K.C. and Stauble, A.J. (1967) Outline of the Geology of Niger Delta. American Association of Petroleum Geologists Bulletin, 51, 761-779.
[15] Merki, P.J. (1970) Structural Geology of the Cenozoic Niger Delta. African Geology, University of Ibadan Press, Ibadan, 251-268.
[16] Egbai, J.C. (2011) Resistivity Method: A Tool for Identification of Areas of Corrosive Groundwater in Agbor, Delta State, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 2, 226-230.
[17] Allen, J.R.L. (1965) Late Quaternary Niger Delta and Adjacent Areas: Sedimentary Environments and Lithofacies. American Association of Petroleum Geologists Bulletin, 49, 547-600.
[18] Oomkens, E. (1974) Lithofacies Relations in the Late Quaternary Niger Delta Complex. Sedimentology, 21, 195-222.
http://dx.doi.org/10.1111/j.1365-3091.1974.tb02056.x
[19] Durotoye, B. (1975) Quaternary Sediments in Nigeria. In: Kogbe, C.A., Ed., Geology of Nigeria, Rockview, Jos, 431-444.
[20] Oloibiri (2014) The Community that Hosted Nigeria’s First Oil Well in 1956.
http://www.premiumtimesng.com
[21] Obasi, R.A. and Balogun, O. (2001) Water Quality and Environmental Impact Assessment of Water Resources in Nigeria. African Journal of Environment Studies, 2, 228-231.
[22] Omo-Irabor, O.O. and Oduyemi, K. (2006) A Hybrid Image Classification Approach for the Systematic Analysis of Land Cover (LC) Changes in the Niger Delta Region. Proceedings of the 6th Int’l Conference on Earth Observation and Geoinformation Sciences in Support of Africa’s Development, Cairo, 30 October-2 November 2006.
[23] Vanhala, H., Soininen, H. and Kukkonen, I. (1992) Detecting Organic Chemical Contaminants by Spectral Induced Polarization Method in Glacial Till Environment. Geophysics, 57, 1014-1017.
http://dx.doi.org/10.1190/1.1443312
[24] Atekwana, E.A., Sauck, W.A. and Werkemer, D.D. (2000) Investigations of Geophysical Signatures at a Hydrocarbon Contaminated Sites. Journal of Applied Geophysics, 44, 167-180.
http://dx.doi.org/10.1016/S0926-9851(98)00033-0
[25] Atekwana, E.A., Sauck, W.A., Abdel Aal, G.Z. and Werkema Jr., D.D. (2002) Geophysical Investigation of Vadose Zone Conductivity Anomalies at a Hydrocarbon Contaminated Site: Implications for the Assessment of Intrinsic Bioremediation. Journal of Environmental & Engineering Geophysics, 7, 103-110.
http://dx.doi.org/10.4133/JEEG7.3.103
[26] Osella, A., de la Vega, M. and Lascano, E. (2002) Characterization of a Contaminant Plume Due to a Hydrocarbon Spill Using Geoelectrical Methods. Journal of Environmental & Engineering Geophysics, 7, 78-87.
[27] Ayolabi, E.A. (2005) Geoelectric Evaluation of Olushosun Landfill Site Southwest Nigeria and Its Implication on Groundwater. Journal of Geological Society of India, 66, 318-322.
[28] Ayolabi, E.A. and Folashade, J.O. (2005) Geophysical and Hydrochemical Assessment of Groundwater Pollution Due to Dumpsite in Lagos State, Nigeria. Journal of Geological Society of India, 66, 617-622.
[29] Amadi, A., Dickson, A. and Maate, G.O. (1993) Effect of Organic and Inorganic Nutrient Supplements on the Performance of Maize (Zea may L). Water, Air, and Soil Pollution, 66, 59-76.
[30] Godio, A. and Naldi, M. (2003) Two-Dimensional Electrical Imaging for Detection of Hydrocarbon Contaminants. Near Surface Geophysics, 2003, 131-137.
[31] Osella, A., de la Vega, M. and Lascano, E. (2002) Characterization of a Contaminant Plume Due to a Hydrocarbon Spill Using Geoelectrical Methods. Journal of Environmental & Engineering Geophysics, 7, 78-87.
http://dx.doi.org/10.4133/JEEG7.2.78
[32] Sauck, W.A. (2000) A Model for the Resistivity Structure of LNAPL Plumes and Their Environs in Sandy Sediments. Journal of Applied Geophysics, 44, 151-165.
http://dx.doi.org/10.1016/S0926-9851(99)00021-X
[33] Cassidy, D.P., Werkema, D.D., Sauck, W.A., Atekwana, E.A., Rossbach, S. and Duris, J. (2001) The Effects of LNAPL Biodegradation Products on Electrical Conductivity Measurements. Journal of Environmental & Engineering Geophysics, 6, 47-52.
http://dx.doi.org/10.4133/JEEG6.1.47
[34] Omar, D.R., Vladimir, S., Jesús, O.V. and Albert, R. (2006) Using Electrical Techniques for Planning the Remediation Process in a Hydrocarbon Contaminated Site. Revista Internacional de Contaminación Ambiental, 22, 157-163.                                               eww141103lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...