跳至主要内容

Topology in Biology: Singularities and Surgery Transformations in Metazoan Development and Evolution

Read full paper at:
www.scirp.org/journal/PaperInformation.aspx?PaperID=50348#.VDsiG1fHRK0

The review presents a topological description and interpretation (analysis) of some events in metazoan development and evolution through the use of well-known mathematical concepts and theorems (using topological approach). It is the topological language that can provide strict and adequate description of various phenomena in developmental and evolutionary transformations. Topological singularities inevitably arising and transforming during early development destroy the preexisting pattern of symmetry. The symmetry breaking of preexisting spatial pattern plays a critical role in biological morphogenesis in development and evolution. Some events of early development are interpreted in terms of symmetry breakdown and related to well-known mathematical theorems. A topological inevitability of some developmental events through the use of classical topological concepts is discussed. The topological approach makes it possible to consider the succession of spherical surgeries, which change the topological genus of an animal body surface. We model the biological shape as a set of smooth, closed, oriented surfaces—membrane or epithelial layers. Membrane and epithelial surfaces are boundary layers, interfaces between a living structure and its environment, ensuring metabolism. Toroid forms as well as fractal structures in metazoans can be considered as functionally optimized biological design and attractors in biological morphogenesis. The epithelial surface is an interface between the internal medium of an organism and the outside environmental medium; topological and fractal transformations during metazoan evolution and development increase this interface, ensuring better adaptation of organism to the environment. Fractal structures as well as toroid forms can be considered as a functionally optimized design in Metazoa. Topological methodology reveals a certain set of topological rules constraining and directing biological morphogenesis during evolution and development.
Cite this paper
Isaeva, V. , Kasyanov, N. and Presnov, E. (2014) Topology in Biology: Singularities and Surgery Transformations in Metazoan Development and Evolution. Applied Mathematics, 5, 2664-2674. doi: 10.4236/am.2014.517255
 

[1] Bouligand, Y. (1996) Morphological Singulatities and Macroevolution. Memorie della Societa Italiana di Scienze Naturali e de Museo Civico di Storia Naturale di Milano, 27, 89-94.
[2] Thom, R. (1969) Topological Models in Biology. Topology, 8, 313-335.
http://dx.doi.org/10.1016/0040-9383(69)90018-4
[3] Thom, R. (1996) Qualitative and Quantitative in Evolutionary Theory with Some Thoughts on Aristotelian Biology. Memorie della Societa Italiana di Scienze Naturali e de Museo Civico di Storia Naturale di Milano, 27, 115-117.
[4] Thom, R. (1997) Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Addison-Wesley Publishing Co., New York.
[5] Wasserman, S.A. and Cozzarelli, N.R. (1986) Biochemical Topology: Applications to DNA Recombination and Replication. Science, 232, 951-960.
http://dx.doi.org/10.1126/science.3010458
[6] Monastyrsky, M.I. (2007) Topology in Molecular Biology. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-540-49858-2
[7] Maresin, V.M. and Presnov, E.V. (1985) Topological Approach to Embryogenesis. Journal of Theoretical Biology, 114, 387-398.
http://dx.doi.org/10.1016/S0022-5193(85)80174-0
[8] Presnov, E.V., Malyghin, S.N. and Isaeva, V.V. (1988) Topological and Thermodynamic Structure of Morphogenesis. In: Lamprecht, I. and Zotin, A.I., Eds., Thermodynamics and Pattern Formation in Biology, Walter de Gruyter, Berlin, 337-370.
[9] Presnov, E., Isaeva, V. and Kasyanov N. (2010) Topological Determination of Early Morphogenesis in Metazoa. Theory in Bioscience, 129, 259-270.
http://dx.doi.org/10.1007/s12064-010-0103-y
[10] Presnov, E., Isaeva, V. and Kasyanov, N. (2014) Topological Invariance in Biological Development. Axiomathes, 24, 117-135.
http://dx.doi.org/10.1007/s10516-013-9216-5
[11] Presnov, E.V. and Isaeva, V.V. (1991) Local and Global Aspects of Biological Morphogenesis. Speculations in Science and Technology, 14, 68-75.
[12] Presnov, E.V. and Isaeva, V.V. (1996) Topological Classification: Onto- and Phylogenesis. Memorie della Societa Italiana di Scienze Naturali e de Museo Civico di Storia Naturale di Milano, 27, 89-94.
[13] Isaeva, V., Presnov, E. and Chernyshev, A. (2006) Topological Patterns in Metazoan Evolution and Development. Bulletin of Mathematical Biology, 68, 2053-2067.
http://dx.doi.org/10.1007/s11538-006-9063-2
[14] Isaeva, V.V., Kasyanov, N.V. and Presnov, E.V. (2008) Analysis Situs of Spatial-Temporal Architecture in Biological Morphogenesis. In: Kelly, J.T., Ed., Progress in Mathematical Biology Research, Nova Science Publishers, New York, 141-189.
[15] Isaeva, V.V., Kasyanov, N.V. and Presnov, E.V. (2012) Topological Singularities and Symmetry Breaking in Development. Biosystems, 109, 280-298.
http://dx.doi.org/10.1016/j.biosystems.2012.05.004
[16] Jockush, H. and Dress, A. (2003) From Sphere to Torus: A Topological View of the Metazoan Body Plan. Bulletin of Mathematical Biology, 65, 57-65.
http://dx.doi.org/10.1006/bulm.2002.0319
[17] Greenblum, S., Turnbaugh, P.J. and Borenstein, E. (2012) Metagenomic Systems Biology of the Human Gut Microbiome Reveals Topological Shifts Associated with Obesity and Inflammatory Bowel Disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 594-599.
http://dx.doi.org/10.1073/pnas.1116053109
[18] Dabaghian, Y., Memoli, F., Frank, L. and Carlsson, G. (2012) A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology. PLoS Computational Biology, 8.
[19] Niizato, T., Murakami, H. and Gunji, Y.P. (2014) Emergence of the Scale-Invariant Proportion in a Flock from the Metric-Topological Interaction. Biosystems, 119, 62-68.
http://dx.doi.org/10.1016/j.biosystems.2014.03.001
[20] Li, R. and Bowerman, B. (2010) Symmetry Breaking in Biology. Cold Spring Harbor Perspectives in Biology, 2, a003475.
[21] Nüsslein-Volhard, C. (1991) Determination of the Embryonic Axes of Drosophila. Development. Supplement, 1, 1-10.
[22] Mullins, R.D. (2010) Cytoskeletal Mechanisms for Breaking Cell Symmetry. Cold Spring Harbor Perspectives in Biology, 2, a003392.
[23] Nuccitelli, R. (1984) The Involvement of Transcellular Ion Currents and Electric Fields in Pattern Formation. In: Malacinski, G.M. and Bryant, S.V., Eds., Pattern Formation: A Primer in Developmental Biology, MacMillan, London, 23-46.
[24] Vacquer, V.D. (1981) Dynamic Changes of the Egg Cortex. Developmental Biology, 84, 1-26.
http://dx.doi.org/10.1016/0012-1606(81)90366-3
[25] Kirschner, M.W. and Gerhart, J.C. (2005) The Plausibility of Life. Yale University Press, Yale, New Haven.
[26] Gilbert, S.F. (2000) Developmental Biology. Sinauer Associates, Inc., Sunderland.
[27] Kline, D. and Nuccitelli, R. (1985) The Wave of Activation Current in the Xenopus Egg. Developmental Biology, 111, 471-487.
http://dx.doi.org/10.1016/0012-1606(85)90499-3
[28] Rivier, N., Miri, M.F. and Oguey, C. (2005) Plasticity and Topological Defects in Cellular Structures: Extra Matter, Folds and Crab Moulting. Colloids and Surfaces A, 263, 39-45.
http://dx.doi.org/10.1016/j.colsurfa.2005.01.027
[29] Vogel, G. (2000) Tracking the Movements that Shape an Embryo. Science, 288, 86-87.
http://dx.doi.org/10.1126/science.288.5463.86
[30] Kolega, J. (1986) The Cellular Basis of Epithelial Morphogenesis. In: Browder, W., Ed., Developmental Biology, Vol. 2, Plenum Press, New York, 103-143.
[31] Zallen, J.A. (2007) Planar Polarity and Tissue Morphogenesis. Cell, 129, 1051-1063.
http://dx.doi.org/10.1016/j.cell.2007.05.050
[32] Nelson, C.M. (2009) Geometric Control of Tissue Morphogenesis. Biochimica et Biophysica Acta-Molecular and Cell Research, 1793, 903-910.
[33] Vladar, E.K., Antic, D. and Axelrod, J.D. (2009) Planar Cell Polarity Signaling: The Developing Cell’s Compass. Cold Spring Harbor Perspectives in Biology, 1, a002964.
[34] Halanych, K.M. (2004) The New View of Animal Phylogeny. Annual Review of Ecology, Evolution and Systematics, 35, 229-256.
http://dx.doi.org/10.1146/annurev.ecolsys.35.112202.130124
[35] Tashiro, Y. (1983) Subcellular Compartments and Protein Topogenesis. Cell Structure and Function, 8, 91-107.
http://dx.doi.org/10.1247/csf.8.91
[36] Whatley, J.M. and Whatley, E.R. (1984) Evolutionary Aspects of the Eukaryotic Cell and Its Organelles. In: Lindskens, H.F. and Heslop-Harrrison, J., Eds., Cellular Interactions, Springer Verlag, Berlin, 18-58.
[37] Shubin, N.H. (1998) Vertebrate Palaeontology: Evolutionary Cut and Paste. Nature, 394, 12-13.
http://dx.doi.org/10.1038/27755
[38] Raff, R.A. and Sly, B.J. (2000) Modularity and Dissociation in the Evolution of Gene Expression Territories in Development. Evolution and Development, 2, 102-113.
http://dx.doi.org/10.1046/j.1525-142x.2000.00035.x
[39] Peter, I.S. and Davidson, E.H. (2011) Evolution of Gene Regulatory Networks Controlling Body Plan Development. Cell, 144, 970-985.
http://dx.doi.org/10.1016/j.cell.2011.02.017
[40] Minelli, A. (2003) The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511541476
[41] Deutsch, J.S. and Mouchel-Vielh, E. (2003) Hox Genes and the Crustacean Body Plan. BioEssays, 25, 878-887.
http://dx.doi.org/10.1002/bies.10319
[42] Sará, M. (1999) New Perspectives on the Role of Constraints in Evolution. Rivista Biologica/Biological Forum, 92, 29-52.
[43] Thomas, R.D.K. and Reif, W.E. (1993) The Skeleton Space: A Finite Set of Organic Designs. Evolution, 47, 341-360.
http://dx.doi.org/10.2307/2410056                       eww141013lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...