TiO2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48507#.VDtHMFfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48507#.VDtHMFfHRK0
Author(s)
Centro
de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de
Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua,
México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
Centro de Investigación en Materiales Avanzados S. C., Laboratorio Nacional de Nanotecnología, Depto. de Materiales Nanoestructurados, Chihuahua, México.
The present investigation shows experimental results obtained with TiO2 thin films synthesized by the sol-gel method assisted with hydrothermal
treatment over polypropylene, using the dip coating technique. Obtained
coatings were characterized through SEM, XRD, UV-Vis and the photo- catalytic
activity was monitored by GC. According to results, the hydrothermal treatment
facilitates the crystallization of the TiO2 anatase phase, which is
present in all synthesized films. Crystal size formed from precursor solutions
(estimated by the Scherrer’s equation) depends on the time and temperature of
the hydrothermal treatment, wherein solution exposed to a higher temperature
treatment of 150。C for 1.5 h (H150/1.5) exhibited a larger crystal size
compared to those synthesized at 80。C for 1.5 h and 3 h (H80/1.5 and H80/3).
Sample H150/1.5 over polypropylene resulted in a uniform and crack free
coating. This behavior was attributed to the precursor solution being denser
than those synthesized at 80。C. Additionally, the photocatalytic activity of
the coatings was evaluated through the degradation of propane. Coating H150/1.5
reached 100% conversion after 3 h of UV light irradiation.
Cite this paper
Guzmán-Velderrain, V. , Ortega López, Y. , Salinas
Gutiérrez, J. , López Ortiz, A. and H. Collins-Martínez, V. (2014)
TiO2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation. Green and Sustainable Chemistry, 4, 120-132. doi: 10.4236/gsc.2014.43017.
[1] | Arnal, P., Corriu, R., Leclercq, D., Mutin, P. and Vioux, A. (1996) Preparation of Anatase, Brookite and Rutile at Low Temperature by Non Hydrolytic Sol-Gel Methods. Journal of Materials Chemistry, 6, 1925. |
[2] | Li, W., Ni, C., Shah, S., Lin, H. and Huang, C. (2004) Size Dependence of Thermal Stability of TiO2 Nanoparticles. Journal of Applied Physics, 96, 6663-6668. |
[3] |
Kaariainen, M.-L., Kaariainen,
T.O. and Cameron, D.C. (2009) Titanium Dioxide Thin Films, Their
Structure and Its Effect on Their Photoactivity and Photocatalytic
Properties. Thin Solid Films, 517, 6666-6670. http://dx.doi.org/10.1016/j.tsf.2009.05.001 |
[4] | Ashimoto, K.H., Irie, H. and Fujishima, A. (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 12, 8269. http://dx.doi.org/10.1143/JJAP.44.8269 |
[5] |
Ao, Y., Xu, J., Shen, X. and
Yuan, C. (2008) Low Temperature Preparation of Anatase TiO2-Activated
Carbon Composite Films. Applied Surface Science, 254, 4001-4006. http://dx.doi.org/10.1016/j.apsusc.2007.12.026 |
[6] | Vera, M. (2008) Fijación del TiO2 a sustratos de vidrio por Sol-Gel combinado con TiO2 comercial. Proceedings of 2do Encuentro de jóvenes investigadores en ciencia y tecnología de materiales (SAM), posadas-Misiones, 16-17 Octubre 2008, 52. |
[7] |
Medina-Valtierra, J.,
Garcia-Servin, J., Frausto-Reyes, C. and Calixto, S. (2006) The
Photocatalytic Application and Regeneration of Anatase Thin Films Whit
Embedded Commercial TiO2 Particles Deposited on Glass Microrods. Applied
Surface Science, 252, 3600-3608.
http://dx.doi.org/10.1016/j.apsusc.2005.05.045 |
[8] |
Reza, E., Reza, M. and Hossein,
A. (2014) Sol-Gel Derived Al and Ga Co-Doped ZnO Thin Films: An
Optoelectronic Study. Applied Surface Science, 290, 252-259. http://dx.doi.org/10.1016/j.apsusc.2013.11.062 |
[9] |
Popa, M., Mereu, R., Filip, M.,
Gabor, M., Petrisor Jr., T., Ciontea, L. and Petrisor, T. (2013) Highly
c-Axis Oriented ZnO Thin Film Using 1-Propanol as Solvent in Sol-Gel
Synthesis. Materials Letters, 92, 267-270. http://dx.doi.org/10.1016/j.matlet.2012.10.099 |
[10] | Wang, X., Shi, F., Gao, X., Fan, C., Huang, W. and Feng, X. (2013) A Sol-Gel Dip/Spin Coating Method to Prepare Titanium Oxide Films. Thin Solid Films, 548, 34-39. http://dx.doi.org/10.1016/j.tsf.2013.08.056 |
[11] | Carballo, L. and Galindo, H. (2001) Estudio de los Procesos Sol-gel para la Obtención de un Aglutinante Apropiado para el Peletizado de Alúmina Revista Ingeniería e Investigación No. 48. |
[12] |
Suciu, R., Indrea, E., Silipas,
T., Dreve, S., Rosu, M., Popescu, V., Popescu, G. and Nascu, H. (2009)
TiO2 Thin Films Prepared by Sol-Gel Method. Journal of Physics
Conference Series, 182, 1. http://dx.doi.org/10.1088/1742-6596/182/1/012080 |
[13] |
Praveen, P., Viruthagiri, G.,
Mugundan, S. and Shanmugam, N. (2014) Structural, Optical and
Morphological Analyses of Pristine Titanium Di-Oxide Nanoparticles
Synthesized via Sol-Gel Route. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 117, 622-629. http://dx.doi.org/10.1016/j.saa.2013.09.037 |
[14] | Nam, W. and Han, G. (2003) A Photocatalytic Performance of TiO2 Photocatalyst Prepared by the Hydrothermal Method. Korean Journal of Chemical Engineering, 20, 180. |
[15] |
Sheng, Y., Liang, L., Xu, Y. and
Wu, D. (2008) Low-Temperature Deposition of the High Performance
Anatase-Titania Optical Films via Modified Sol-Gel Route. Optical
Materials, 30, 1310-1315. http://dx.doi.org/10.1016/j.optmat.2007.06.010 |
[16] | Parra, R., Góes, M.S., Castro, M.S., Longo, E., Bueno, P.R. and Varela, J.A. (2008) Reaction Pathway to the Synthesis of Anatase via the Chemical Modification of Titanium Isopropoxide with Acetic Acid. Chemistry of Materials, 20, 143-150. http://dx.doi.org/10.1021/cm702286e |
[17] |
Yu, J., Yu, H., Cheng, B., Zhou,
M. and Zhao, X. (2006) Enhanced Photocatalytic Activity of TiO2 Powder
(P25) by Hydrothermal Treatment. Journal of Molecular Catalysis A:
Chemical, 253, 112-118. http://dx.doi.org/10.1016/j.molcata.2006.03.021 |
[18] | Yang, H.G. and Zeng, H.C. (2004) Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. Journal of Physical Chemistry B, 108, 3492-3495. http://dx.doi.org/10.1021/jp0377782 |
[19] |
Zhou, C.H., Xu, S., Yang, Y.,
Yang, B.C., Hu, H., Quan, Z.C., Sebo, B., Chen, B.L., Tai, Q.D., Sun,
Z.H. and Zhao, X.Z. (2011) Titanium Dioxide Sols Synthesized by
Hydrothermal Methods Using Tetrabutyl Titanate as Starting Material and
the Application in Dye Sensitized Solar Cells. Electrochimica Acta, 56,
4308-4314. http://dx.doi.org/10.1016/j.electacta.2011.01.054 |
[20] | Yun, Y., Chung, J., Kim, S., Hahn, S. and Kim, E.J. (2004) Low Temperature Coating of Sol-Gel Anatase Thin Films. Materials Letters, 58, 3703. http://dx.doi.org/10.1016/j.matlet.2004.07.018 |
[21] | Hsiao, P.T., Lu, M.D., Tung, Y.L. and Teng, H. (2010) Influence of Hydrothermal Pressure during Crystallization on the Structure and Electron-Conveying Ability of TiO2 Colloids for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 114, 15625. http://dx.doi.org/10.1021/jp1061013 |
[22] |
Cerrada, M., Serrano, C.,
Sánchez-Chaves, M., Fernández-García, M., Fernandez-Martin, F., de
Andrés, A., Jiménez, R., Kubacka, A., Ferrer, M. and Fernández-Garcia,
M. (2008) Self-Sterilized EVOH-TiO2 Nanocomposites: Interface Effects on
Biocidal Properties. Advanced Functional Materials, 18, 1949-1960. http://dx.doi.org/10.1002/adfm.200701068 |
[23] | Sayilkan, F., Asiltürk, M., Tatar, P., Kiraz, N., Arpaü, E. and Sayilkan, H. (2007) Preparation of Re-Usable Photocatalytic Filter for Degradation of Malachite Green Dye under UV and vis-Irradiation. Journal of Hazardous Materials, 148, 735-744. http://dx.doi.org/10.1016/j.jhazmat.2007.03.036 |
[24] | He, F., Li, J., Li, T. and Li, G. (2014) Solvothermal Synthesis of Mesoporous TiO2: The Effect of Morphology, Size and Calcination Progress on Photocatalytic Activity in the Degradation of Gaseous Benzene. Chemical Engineering Journal, 237, 312-321. http://dx.doi.org/10.1016/j.cej.2013.10.028 |
[25] | Murugan, K., Rao, T., Narashima, G.V., Gandhi, A. and Murty, B.S. (2011) Effect of Dehydration Rate on Non-Hydrolytic TiO2 Thin Film Processing: Structure, Optical and Photocatalytic Performance Studies. Materials Chemistry & Physics, 129, 810-815. http://dx.doi.org/10.1016/j.matchemphys.2011.05.011 |
[26] | Sayilkan, F., Asiltürk, M., Sayilkan, H., Onal, Y., Akarsu, M. and Arpaü, E. (2005) Characterization of TiO2 Synthesized in Alcohol by Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst. Turkish Journal of Chemistry, 29, 697-706. |
[27] | Bischoff, B.L. and Anderson, M.A. (1995) Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2). Chemistry of Materials, 7, 1772-1778. |
[28] | Hemissi, M. and Amardjia-Adnani, H. (2007) Optical and Structural Properties of Titanium Oxide Thin Films Prepared by Sol-Gel Method Digest. Journal of Nanomaterials and Biostructures, 2, 299. |
[29] | Kim, T.K., Lee, M.N., Lee, S.H., Park, Y.C., Jung, C.K. and Boo, J.H. (2005) Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification. Thin Solid Films, 475, 171-177. http://dx.doi.org/10.1016/j.tsf.2004.07.021 |
[30] | Carp, O., Huisman, C.L. and Reller, A. (2004) Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32, 33-177. http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001 |
[31] | Yu, J., Wang, G., Cheng, B. and Zhou, M. (2007) Effects of Hydrothermal Temperature and Time on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous TiO2 Powders. Applied Catalysis B: Environmenral, 69, 171. |
[32] |
Prasai, B., Cai, B., Underwood,
M.K., Lewis, J.P. and Drabold, D.A. (2012) Properties of Amorphous and
Crystalline Titanium Dioxide from First Principles. Journal of Materials
Science, 47, 7515-7521. http://dx.doi.org/10.1007/s10853-012-6439-6 eww141013lx |
评论
发表评论