Synthesis, Electrochemistry and Antitumor Activity of 1’H, 3’H(Me)-spiro-[(aza)benzimidazoline-2’, 3-(1,2-diferrocenylcyclopropenes)], 2-(1,2-Diferrocenylvinyl)benz- and Azabenzimidazoles
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50744#.VEm93VfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50744#.VEm93VfHRK0
Author(s)
1Faculty of Chemistry, University National Autonomous of México, México City, México.
2Centre of Investigation and Development Technology in Electrochemistry S.C., Queretaro, México.
3Departament of Bioengineering, South Kensington, Imperial College London, London, UK.
4Institute of Chemistry, University National Autonomous of México, México City, México.
2Centre of Investigation and Development Technology in Electrochemistry S.C., Queretaro, México.
3Departament of Bioengineering, South Kensington, Imperial College London, London, UK.
4Institute of Chemistry, University National Autonomous of México, México City, México.
A new
method of synthesis of 2-(1,2-diferrocenylvinyl)benz- and azabenzimidazoles
(3a-f), (4a-f) and 1’H,3’H(Me)-spiro-[(aza)benzimidazoline-2’,3-(1,2-diferrocenylcyclopropenes)]
(5a-f) via reactions of diferrocenyl(methylsulfanyl)cyclopropenylium
iodide (1) with aromatic o-diamines
(2a-f) in the presence of Et3N (80°C - 82°C) is described. The
structures of the resultant compounds are established using IR, 1H
and 13C NMR spectroscopy, mass spectrometry and elemental analysis.
The structure of one compound, cis-2-(1,2-diferrocenylvinyl)-1-methylbenzimidazole
(3b), is confirmed by X-ray diffraction analysis. The electrochemical
properties of compounds 3a, 3b, 3d and 5f are investigated using cyclic square wave
voltammetry. Two electrochemical processes (I-II), attributed to oxidation of
the ferrocene moieties, and the values of E0’(I), E0’(II), DE0’(II-I) and comporportionation constant Kcom are reported. The bioactivities of seven compounds 3a,
3c-f, 5d, 5f are evaluated. Compound 5f is the most active compound with a
modest cytotoxic activity against six human cancer cell lines: U-251 (glioma),
PC-3 (prostate cancer), K-562 (leukemia), HCT-15 (colon cancer), MCF-7 (breast
cancer) and SKLU-1 (lung cancer).
KEYWORDS
Cite this paper
García, J. , Ortiz-Frade, L. , Martínez-Klimova, E. ,
Ramos, J. , Flores-Alamo, M. , Apan, T. and Klimova, E. (2014)
Synthesis, Electrochemistry and Antitumor Activity of 1’H,
3’H(Me)-spiro-[(aza)benzimidazoline-2’,
3-(1,2-diferrocenylcyclopropenes)], 2-(1,2-Diferrocenylvinyl)benz- and
Azabenzimidazoles. Open Journal of Synthesis Theory and Applications, 3, 44-56. doi: 10.4236/ojsta.2014.34007.
[1] |
Komatsu, K. and Kitagawa, T.
(2003) Cyclopropenylium Cations, Cyclopropenones, and
Heteroanaloges—Recent Advances. Chemical Reviews, 103, 1371-1427. http://dx.doi.org/10.1021/cr010011q |
[2] | Komatsu, K. and Yoshida, Z. (1996) Cyclopropenylium Salts. In: Meijere, A., Ed., Methods of Organic Chemistry (Houben-Weyl), E17d, Thieme, Stuttgart, 3079-3192. |
[3] |
Klimova, E.I., Klimova, T.,
Hernández Ortega, S., Méndez Iturbide, D., García Marquez, A. and
Martínez García, M. (2005) Diferrocenylcyclopropenyl Cations. Synthesis,
Structures, and Some Chemical Properties. Journal of Organometallic
Chemistry, 690, 3333-3339. http://dx.doi.org/10.1016/j.jorganchem.2005.04.014 |
[4] |
Klimova, T., Klimova, E.I.,
Méndez Stivalet, J.M., Hernández-Ortega, S. and Martínez García, M.
(2005) Diferrocenyl(methylthio)cyclopropenylium Iodide in the Synthesis
of 2,3-Diferrocenyl-1-methylthio-1,3-dienes and -1,3, 5-trienes.
European Journal Organic Chemistry, 4406-4413. http://dx.doi.org/10.1002/ejoc.200500284 |
[5] |
Klimova, E.I., Mendez Stivalet,
J.M., Klimova, T., Flores Alamo, M., Backinowsky, L.V., Ortiz Frade, L.
and Martìnez Garcìa, M. (2010) Reactions of Diferrocenylmorpholinoand
Methylsulfanyl-Cyclopropenylium Salts with β-Dicarbonyl Compounds and
Diethyl Malonate. Synthetic Communications, 40, 839-854. http://dx.doi.org/10.1080/00397910903014240 |
[6] |
Klimova, E.I., Klimova, T.,
Flores Alamo, M., Backinowsky, L.V. and Martìnez Garcìa, M. (2009)
Intramolecular Transformations of 3-Cyanoaminoand
3-Cyanoimino-1,2-diferrocenylcyclopropenes. Molecules, 14, 3161-3175. http://dx.doi.org/10.3390/molecules14093161 |
[7] |
Klimova, E.I., Vazquez Lopez,
E.A., Flores-Alamo, M., Klimova, T. and Martìnez Garcìa, M. (2009) A
Novel Synthesis of Ferrocenylpyridazines. European Journal Organic
Chemistry, 25, 4352-4356. http://dx.doi.org/10.1002/ejoc.200900505 |
[8] |
Klimova, E.I., Klimova, T.,
Backinowsky, L.V., Flores Alamo, M., Ortiz-Frade, L.A. and Martínez
García, M. (2010) Novel Intramolecular Transformations of
Amino(diferrocenyl)vinylcarbenes. Mendeleev Communications, 20, 312-313. http://dx.doi.org/10.1016/j.mencom.2010.11.002 |
[9] |
Klimova, E.I., Ortiz-Frade,
L.A., Klimova, T., González-Fuentes, M.A., Flores-Alamo, M.,
Backinowsky, L.V. and Martínez García, M. (2011) Intramolecular
Conversions of (Aminoferrocenylpenta-1,4-dienyl)-ferrocenylcarbenes:
Synthesis of Diferrocenylmono-, Bi-, Tricycles and
Amino(diferrocenyl)hexa-1,3,5-trienes. Molecules, 16, 5574-5590. http://dx.doi.org/10.3390/molecules16075574 |
[10] | Vázquez López, E.A., Flores-Alamo, M., Martínez Mendoza, J.M. and Klimova, E.I. (2007) 4-(4-Nitrobenzyl)-pyridine in Reaction with Diferrocenyl(methylthio)-cyclopropenylium Iodide. Journal Mexican Chemistry Society, 51, 1115. |
[11] |
Klimova Berestneva, T., Klimova,
E.I., Flores-Alamo, M., Bakinovsky, L.V., Martìnez Garcìa, M., de
Química, F., et al. (2006) Formation of
4,5-Diferrocenyl-6-methylthio-6H-1,2-oxazine N-Oxides and Migration of a
Nitro Group in Reactions of
2,3-Diferrocenyl-1-methylthiocyclopropenylium Iodide with Nitroalkane.
Synthesis, 21, 3706-3710. http://dx.doi.org/10.1055/s-2006-950288 |
[12] |
Berestneva, T.K., Klimova, E.I.,
Flores Alamo, M., Méndez Iturbide, D. and Martìnez Garcìa, M. (2009)
Synthesis, Structure, and Some Chemical Properties of
Diferrocenyl-1,2,3-triazines. Journal of Heterocyclic Chemistry, 46,
477483. http://dx.doi.org/10.1002/jhet.93 |
[13] |
Klimova, E.I., Flores Alamo, M.,
Cortez Maya, S., García-Ramos, J.C., Ortiz-Frade, L. and Méndez
Stivalet, J.M. (2013) Novel Synthesis and Electrochemistry of
2-(1,2-Diferrocenylvinyl)imidazoline and -Imidazilidine Derivatives.
Journal of Organometallic Chemistry, 743, 24-30. http://dx.doi.org/10.1016/j.jorganchem.2013.06.003 |
[14] | Klimova, E.I., Vázquez López, E.A., Flores Alamo, M., Ortiz-Frade, L.A., Hernández-Sánchez, G., Sotelo Domínguez, V.H. and Martínez García, M. (2012) 2-Arylimino(diferrocenyl)and (Di-p-anisyl)dihydropyrimidines: Novel Synthesis, Structures and Electrochemistry. Journal of Heterocyclic Chemistry, 49, 1156-1262. |
[15] | Eicher, T. and Hauptmann, S. (2006) The Chemistry of Heterocycles, Structures, Reactions, Synthesis and Applications. Wiley-VCH GmbH & Co. KGaA, Weinheim. |
[16] |
Breslow, R. (1991) How Do
Imidazole Groups Catalyze the Cleavage of RNA in Enzyme Models and in
Enzymes? Evidence from “Negative Catalysis”. Accounts of Chemical
Research, 24, 317-324. http://dx.doi.org/10.1021/ar00011a001 |
[17] |
Fife, T.H. (1993) Kinetic and
Mechanistic Effects of Ease of Carbon-Nitrogen Bond Breaking in Amide
Hydrolysis. The Mechanisms of Hydrolysis of N-Acylimidazoles and
N-Acylbenzimidazoles. Accounts of Chemical Research, 26, 325-331. http://dx.doi.org/10.1021/ar00030a005 |
[18] |
Schwoch, S., Kramer, W.,
Neidlein, R. and Suschitzky, H. (1994) 2,3-Dihydrospiro[1H-4and
5-azabenzimidazole-2,1′cyclohexane](=Spiro[cyclohexane-1,2′(3′H)-1′H-imidazo[4,5-b]pyridine]
and Spiro[cyclohexane-1,2′(3′H)1′H-imidazo[4, 5-c]pyridine]): Reactions
with Nucleophiles.. Helvetica Chimica Acta, 77, 2175-2190. http://dx.doi.org/10.1002/hlca.19940770811 |
[19] |
Drewes, S.E., Malissar, D.G.S.
and Roos, G.H.P. (1992) A Novel Imidazolidin-2-One Auxiliary for a
Highly Stereoselective Aldol Route to β-Hydroxyesters. Tetrahedron:
Asymmetry, 3, 515-516. http://dx.doi.org/10.1016/S0957-4166(00)80254-2 |
[20] |
Corey, E.J. and Mehrotra, M.M.
(1988) A Simple and Enantioselective Synthesis of (+)-Biotin.
Tetrahedron Letters, 29, 57-60. http://dx.doi.org/10.1016/0040-4039(88)80015-7 |
[21] |
Gridnev, A.A. and Mihalteva,
I.M. (1994) Synthesis of 1-Alkylimidazoles. Synthetic Communications,
24, 1547-1555. http://dx.doi.org/10.1080/00397919408010155 |
[22] |
Babin, V.N., Belousov, Yu.A.,
Gumenyuk, V.V., Materikova, V.V., Salimov, R.B. and Kochetkova, N.S.
(1983) Reactions of Anionic Nitrogen Heterocycles with Iron Carbonyls.
Journal of Organometallic Chemistry, 241, C41-C44. http://dx.doi.org/10.1016/S0022-328X(00)98535-8 |
[23] |
Kaluz, S. and Toma, S. (1986)
Addition of Cand S-nucleophiles to Acryloylferrocene and
Cinnamoylferrocene Catalysed by KF/Al2O3. Collection of Czechoslovak
Chemical Communications, 51, 2199-2206. http://dx.doi.org/10.1135/cccc19862199 |
[24] | Heydenhauss, D., Kramer, C.R. and Jaenecke, G. (1986) The Effect of Substituents on the Half-Wave Potential of 2-Ferrocenyl Substituted Imidazole and Benzimidazole. Zeitschrift fur Physikalische Chemie (Leipzig), 267, 33-44. |
[25] |
Villemin, D. and Richard, M.
(1987) Condensation on Alumina. III. Synthesis of 5-Alkylidene,
2-Thiohydantoin from 3-Acetyl, 2-Thiohydantoin. Synthetic
Communications, 17, 283-289. http://dx.doi.org/10.1080/00397918708077308 |
[26] | Schvekhgeimer, M.G.A. (1991) Heteroarylferrocenes. Khimiya Geterotsiklicheskikh Soedinenii, 2, 147-163. |
[27] |
Schvekhgeimer, M.G.A. (1996)
Heterylferrocenes. Synthesis and Use. Russian Chemical Reviews, 65,
41-79. http://dx.doi.org/10.1070/RC1996v065n01ABEH000199 |
[28] |
Sisko, J., Kassick, A.J.,
Mellinger, M., Filan, J.J., Allen, A. and Olsen, M.A. (2000) An
Investigation of Imidazole and Oxazole Syntheses Using Aryl-Substituted
TosMIC Reagents. Journal of Organic Chemistry, 65, 1516-1524. http://dx.doi.org/10.1021/jo991782l |
[29] |
Robinson, M.B. and Day, P.
(1968) Mixed-Valence Chemistry: A Survey and Classification. Advances in
Inorganic Chemistry and Radiochemistry, 10, 247-422. http://dx.doi.org/10.1016/S0065-2792(08)60179-X |
[30] | Gritzner, G. and Küta, J. (1984) Physical and Biophysical Chemistry Division Commission on Electrochemistry. Pure and Applicated Chemistry, 56, 461-466. |
[31] | Sheldrick, G.M. (1994) SHELXS-97, Program for the Refinement of Crystal Structures. University of Gottingen, Gottingen. |
[32] |
Monks, A., Scudiero, D., Skehan,
P., Shoemaker, R., Paul, K., Vistica, D., Hose, C., Langley, J.,
Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J.
and Boyd, M. (1991) Feasibility of a High-Flux Anticancer Drug Screen
Using a Diverse Panel of Cultured Human Tumor Cell Lines. Journal of the
National Cancer Institute, 83, 757-776. http://dx.doi.org/10.1093/jnci/83.11.757 |
[33] |
Skehan, P., Storeng, R.,
Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T.,
Bokesch, H., Kenney, S. and Boyd, M.R. (1990) New Colorimetric
Cytotoxicity Assay for Anticancer-Drug Screening. Journal of the
National Cancer Institute, 82, 1107-1112. http://dx.doi.org/10.1093/jnci/82.13.1107 |
[34] | Bard, A.J. and Faulkner, L.R. (1980) Electrochemical Methods, Fundamentals and Applications. John Wiley and Sons, New York. |
[35] | Zanello, P. (2003) Inorganic Electrochemistry, Theory, Practice and Application. The Royal Society of Chemistry, Cambridge. |
[36] |
Helfrick, J.C. and Bottomley,
L.A. (2009) Cyclic Square Wave Voltammetry of Single and Consecutive
Reversible Electron Transfer Reactions. Analytical Chemistry, 81,
9041-9047. http://dx.doi.org/10.1021/ac9016874 eww141024lx |
评论
发表评论