Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50684#.VEiSZVfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50684#.VEiSZVfHRK0
Author(s)
1Innovation and Development in Advanced Materials, POLYnnova Group, San Luis Potosí, México.
2A Schulman of México, San Luis Potosí, México.
3Institute of Physic, Autonomous University of San Luis Potosí, San Luis Potosí, México.
4Academic Coordination, Altiplano Region, Autonomous University of San Luis Potosí, San Luis Potosí, México.
2A Schulman of México, San Luis Potosí, México.
3Institute of Physic, Autonomous University of San Luis Potosí, San Luis Potosí, México.
4Academic Coordination, Altiplano Region, Autonomous University of San Luis Potosí, San Luis Potosí, México.
Ag/TiO2 nanocomposites are usually
regarded as an effective synergy for high antimicrobial performance
under ultraviolet-visible light conditions. This study confirmed that
the surface plasmon resonance of Ag NPs plays an important role in
relation to the NPs size and consequently with the antibacterial effect
of the nanocomposite. We observed that under visible light the
reactivity of TiO2 cannot be amplified when it is supporting
Ag NPs that have an inactive photocatalytically surface. The results
confirmed that the antimicrobial effectiveness of nanocomposite based on
Ag NPs supported-TiO2 is closely associated to the contact surface area and to the electronic performance of the noble metal.
KEYWORDS
Cite this paper
Quiñones-Jurado, Z. , Waldo-Mendoza, M. ,
Aguilera-Bandin, H. , Villabona-Leal, E. , Cervantes-González, E. and
Pérez, E. (2014) Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance. Materials Sciences and Applications, 5, 895-903. doi: 10.4236/msa.2014.512091.
[1] |
Marambio, C. and Hoek, E. (2010)
A Review of the Antibacterial Effects of Silver Nanomaterials and
Potential Implications for Human Health and the Environment. Journal of
Nanoparticle Research, 12, 1531-1551. http://dx.doi.org/10.1007/s11051-010-9900-y |
[2] | Baker, C, Pradhan, A., Pakstis, L., Pochan, D. and Shah, I. (2005) Synthesis and Antibacterial Properties of Silver Nanoparticles. Journal of Nanoparticle Research, 5, 244-249. |
[3] |
Rai, M., Yadav, A. and Gade, A.
(2009) Silver Nanoparticles as a New Generation of Antibacterials.
Biotechnology Advances, 27, 76-83. http://dx.doi.org/10.1016/j.biotechadv.2008.09.002 |
[4] |
Yoon, K., Byeon, J., Park, J.,
Hi, J., Bae, G and Hwang, J. (2008) Antibacterial Characteristics of
Silver Aerosol Nanoparticles against Bacillus subtilis Bioaerosols.
Environmental Engineering Science, 25, 289-294. http://dx.doi.org/10.1089/ees.2007.0003 |
[5] |
Lok, C., Ho, C., Chen, R., He,
Q., Wing, Y., Sun, H., Tam, P., Chiu, J. and Che, C. (2006) Proteomic
Analysis of the Mode of Antibacterial Action of Silver Nanoparticles.
Journal of Proteome Research, 5, 916-924. http://dx.doi.org/10.1021/pr0504079 |
[6] |
Pal, S., Tak, Y. and Song, J.
(2007) Does the Antibacterial Activity of Silver Nanoparticles Depend on
the Shape of the Nanoparticle? A Study of the Gramnegative Bacterium
Escherichia coli. Applied and Environmental Microbiology, 73, 1712-1720.
http://dx.doi.org/10.1128/AEM.02218-06 |
[7] |
Ayala, N., Lara, H., Ixtepan, L.
and Rodríguez, C. (2009) Silver Nanoparticles Toxicity and Bactericidal
Effect against Methicillin-Resistant. Staphylococcus aureus: Nanoscale
Does Matter. Nanobiotechnology, 5, 2-9. http://dx.doi.org/10.1007/s12030-009-9029-1 |
[8] |
Dror, A., Mamane, H., Belenkova,
T., Markovich, G. and Adin, A. (2009) Silver Nanoparticle—E. coli
Colloidal Interaction in Water and Effect on E. coli Survival. Journal
of Colloid and Interface Science, 339, 521-526. http://dx.doi.org/10.1016/j.jcis.2009.07.052 |
[9] |
Reidy, B., Haase, A., Luch, A.,
Dawson, K. and Lynch, I. (2013) Mechanisms of Silver Nanoparticle
Release, Transformation and Toxicity: A Critical Review of Current
Knowledge and Recommendations for Future Studies and Applications.
Materials, 6, 2295-2350. http://dx.doi.org/10.3390/ma6062295 |
[10] |
Tao, A., Habas, S. and Yang, P.
(2008) Shape Control of Colloidal Metal Nanocrystals. Small, 4, 310-325.
http://dx.doi.org/10.1002/smll.200701295 |
[11] |
Xiu, Z., Zhang, Q., Puppala, H.,
Colvin, V. and Alvarez, P. (2012) Negligible Particle-Specific
Antibacterial Activity of Silver Nanoparticles. Nano Letters, 12,
4271-4275. http://dx.doi.org/10.1021/nl301934w |
[12] |
Sunada, K., Watanabe, T. and
Hashimoto, K. (2003) Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environmental Science & Technology, 37, 4785-4789. http://dx.doi.org/10.1021/es034106g |
[13] |
Xiaoyang, P. and Yi-Jun, X.
(2013) Defect-Mediated Growth of Noble-Metal (Ag, Pt, and Pd)
Nanoparticles on TiO2 with Oxygen Vacancies for
Photocatalytic Redox Reactions under Visible Light. The Journal of
Physical Chemistry C, 117, 17996-18005. http://dx.doi.org/10.1021/jp4064802 |
[14] |
Yao, K., Wang, D., Ho, W., Yan,
J. and Tzeng, K. (2007) Photocatalytic Bactericidal Effect of TiO2 Thin Film on Plant Pathogens. Surface and Coatings Technology, 201, 6886-6888. http://dx.doi.org/10.1016/j.surfcoat.2006.09.068 |
[15] |
Cai, Y.L., Stromme, M. and
Welch, K. (2014) Disinfection Kinetics and Contribution of Reactive
Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. Journal of Biomaterials and Nanobiotechnology, 5, 200-209. http://dx.doi.org/10.4236/jbnb.2014.53024 |
[16] |
Loganathan, K., Bommusamy, P.,
Muthaiahpillai, P. and Velayutham, M. (2011) The Syntheses,
Characterizations, and Photocatalytic Activities of Silver, Platinum,
and Gold Doped TiO2 Nanoparticles. Environmental Engineering Research, 16, 81-90. http://dx.doi.org/10.4491/eer.2011.16.2.81 |
[17] |
Huanjun, Zh. and Guohua, Ch. (2009) Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method. Environmental Science & Technology, 43, 2905-2910. http://dx.doi.org/10.1021/es803450f |
[18] |
Keleher, J., Bashant, J., Heldt,
N., Johnson, L. and Li, Y. (2002) Photo-Catalytic Preparation of
Silver-Coated TiO2 Particles for Antibacterial Applications. Journal of Microbiology and Biotechnology, 18, 133-139. http://dx.doi.org/10.1023/A:1014455310342 |
[19] |
Ashkarran, A., Aghigh, S.,
Kavianipour, M. and Farahani, N. (2011) Visible Light Photo-and
Bioactivity of Ag/TiO2 Nanocomposite with Various Silver Contents. Current Applied Physics, 11, 1048-1055. http://dx.doi.org/10.1016/j.cap.2011.01.042 |
[20] |
Zou, X., Silva, R., Huang, X.,
Jafar, F., Al-Sharab, J. and Asefa, T. (2013) A Self-Cleaning Porous TiO2-Ag Core-Shell Nanocomposite Material for Surface-Enhanced Raman Scattering. Chemical Communications, 49, 382-384. http://dx.doi.org/10.1039/c2cc35917k |
[21] |
Pan, X., Medina, I., Mernaugh,
R. and Liu, J. (2010) Characterization and Bactericidal Performance of
Silver Modified Titaniaphotocatalyst. Colloids and Surfaces B:
Biointerfaces, 77, 82-89. http://dx.doi.org/10.1016/j.colsurfb.2010.01.010 |
[22] | Lin, Y.-C., Bai, H., Lin, C.-H. and Wu, J.-F. (2013) Applying Surface Charge Attraction to Synthesizing TiO2/Ag Composition for VOCs Photodegradation. Aerosol and Air Quality Research, 13, 1512-1520. |
[23] |
Choi, H., Jung Y. and Kim, S.
(2004) Characterization of Raman Spectra of Size-Selected TiO2 Nanoparticles by Two-Dimensional Correlation Spectroscopy. Bulletin of the Korean Chemical Society, 25, 426-428. http://dx.doi.org/10.5012/bkcs.2004.25.3.426 |
[24] |
Chen, X. and Mao, S. (2007)
Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications,
and Applications. Chemical Reviews, 107, 2891-2959. http://dx.doi.org/10.1021/cr0500535 |
[25] |
Tsivadze, A., Ionova, G.,
Mikhalko, V., Ionova, I. and Gerasimova, G. (2013) Plasmon Properties of
Silver Spherical Nanoparticles and Films. Protection of Metals and
Chemistry of Surfaces, 49, 169-172. http://dx.doi.org/10.1134/S207020511302010X |
[26] | Madigan, M., Martinko, J. and Parker, J. (2003) Brock Biology of Microorganisms. 10th Edition, Pearson, Prentice Hall, New York. |
[27] |
Wen, L., Xiao, X., Qing, S.,
Hai, Z., You, O. and Yi, C. (2010) Antibacterial Activity and Mechanism
of Silver Nanoparticles on Escherichia coli. Applied Microbiology and
Biotechnology, 85, 1115-1122. http://dx.doi.org/10.1007/s00253-009-2159-5 eww141023lx |
评论
发表评论