跳至主要内容

Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50684#.VEiSZVfHRK0

Ag/TiO2 nanocomposites are usually regarded as an effective synergy for high antimicrobial performance under ultraviolet-visible light conditions. This study confirmed that the surface plasmon resonance of Ag NPs plays an important role in relation to the NPs size and consequently with the antibacterial effect of the nanocomposite. We observed that under visible light the reactivity of TiO2 cannot be amplified when it is supporting Ag NPs that have an inactive photocatalytically surface. The results confirmed that the antimicrobial effectiveness of nanocomposite based on Ag NPs supported-TiO2 is closely associated to the contact surface area and to the electronic performance of the noble metal.
Cite this paper
Quiñones-Jurado, Z. , Waldo-Mendoza, M. , Aguilera-Bandin, H. , Villabona-Leal, E. , Cervantes-González, E. and Pérez, E. (2014) Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance. Materials Sciences and Applications, 5, 895-903. doi: 10.4236/msa.2014.512091
 

[1] Marambio, C. and Hoek, E. (2010) A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. Journal of Nanoparticle Research, 12, 1531-1551.
http://dx.doi.org/10.1007/s11051-010-9900-y
[2] Baker, C, Pradhan, A., Pakstis, L., Pochan, D. and Shah, I. (2005) Synthesis and Antibacterial Properties of Silver Nanoparticles. Journal of Nanoparticle Research, 5, 244-249.
[3] Rai, M., Yadav, A. and Gade, A. (2009) Silver Nanoparticles as a New Generation of Antibacterials. Biotechnology Advances, 27, 76-83.
http://dx.doi.org/10.1016/j.biotechadv.2008.09.002
[4] Yoon, K., Byeon, J., Park, J., Hi, J., Bae, G and Hwang, J. (2008) Antibacterial Characteristics of Silver Aerosol Nanoparticles against Bacillus subtilis Bioaerosols. Environmental Engineering Science, 25, 289-294.
http://dx.doi.org/10.1089/ees.2007.0003
[5] Lok, C., Ho, C., Chen, R., He, Q., Wing, Y., Sun, H., Tam, P., Chiu, J. and Che, C. (2006) Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Journal of Proteome Research, 5, 916-924.
http://dx.doi.org/10.1021/pr0504079
[6] Pal, S., Tak, Y. and Song, J. (2007) Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gramnegative Bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712-1720.
http://dx.doi.org/10.1128/AEM.02218-06
[7] Ayala, N., Lara, H., Ixtepan, L. and Rodríguez, C. (2009) Silver Nanoparticles Toxicity and Bactericidal Effect against Methicillin-Resistant. Staphylococcus aureus: Nanoscale Does Matter. Nanobiotechnology, 5, 2-9.
http://dx.doi.org/10.1007/s12030-009-9029-1
[8] Dror, A., Mamane, H., Belenkova, T., Markovich, G. and Adin, A. (2009) Silver Nanoparticle—E. coli Colloidal Interaction in Water and Effect on E. coli Survival. Journal of Colloid and Interface Science, 339, 521-526.
http://dx.doi.org/10.1016/j.jcis.2009.07.052
[9] Reidy, B., Haase, A., Luch, A., Dawson, K. and Lynch, I. (2013) Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials, 6, 2295-2350.
http://dx.doi.org/10.3390/ma6062295
[10] Tao, A., Habas, S. and Yang, P. (2008) Shape Control of Colloidal Metal Nanocrystals. Small, 4, 310-325.
http://dx.doi.org/10.1002/smll.200701295
[11] Xiu, Z., Zhang, Q., Puppala, H., Colvin, V. and Alvarez, P. (2012) Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters, 12, 4271-4275.
http://dx.doi.org/10.1021/nl301934w
[12] Sunada, K., Watanabe, T. and Hashimoto, K. (2003) Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environmental Science & Technology, 37, 4785-4789.
http://dx.doi.org/10.1021/es034106g
[13] Xiaoyang, P. and Yi-Jun, X. (2013) Defect-Mediated Growth of Noble-Metal (Ag, Pt, and Pd) Nanoparticles on TiO2 with Oxygen Vacancies for Photocatalytic Redox Reactions under Visible Light. The Journal of Physical Chemistry C, 117, 17996-18005.
http://dx.doi.org/10.1021/jp4064802
[14] Yao, K., Wang, D., Ho, W., Yan, J. and Tzeng, K. (2007) Photocatalytic Bactericidal Effect of TiO2 Thin Film on Plant Pathogens. Surface and Coatings Technology, 201, 6886-6888.
http://dx.doi.org/10.1016/j.surfcoat.2006.09.068
[15] Cai, Y.L., Stromme, M. and Welch, K. (2014) Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. Journal of Biomaterials and Nanobiotechnology, 5, 200-209.
http://dx.doi.org/10.4236/jbnb.2014.53024
[16] Loganathan, K., Bommusamy, P., Muthaiahpillai, P. and Velayutham, M. (2011) The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles. Environmental Engineering Research, 16, 81-90.
http://dx.doi.org/10.4491/eer.2011.16.2.81
[17] Huanjun, Zh. and Guohua, Ch. (2009) Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method. Environmental Science & Technology, 43, 2905-2910.
http://dx.doi.org/10.1021/es803450f
[18] Keleher, J., Bashant, J., Heldt, N., Johnson, L. and Li, Y. (2002) Photo-Catalytic Preparation of Silver-Coated TiO2 Particles for Antibacterial Applications. Journal of Microbiology and Biotechnology, 18, 133-139.
http://dx.doi.org/10.1023/A:1014455310342
[19] Ashkarran, A., Aghigh, S., Kavianipour, M. and Farahani, N. (2011) Visible Light Photo-and Bioactivity of Ag/TiO2 Nanocomposite with Various Silver Contents. Current Applied Physics, 11, 1048-1055.
http://dx.doi.org/10.1016/j.cap.2011.01.042
[20] Zou, X., Silva, R., Huang, X., Jafar, F., Al-Sharab, J. and Asefa, T. (2013) A Self-Cleaning Porous TiO2-Ag Core-Shell Nanocomposite Material for Surface-Enhanced Raman Scattering. Chemical Communications, 49, 382-384.
http://dx.doi.org/10.1039/c2cc35917k
[21] Pan, X., Medina, I., Mernaugh, R. and Liu, J. (2010) Characterization and Bactericidal Performance of Silver Modified Titaniaphotocatalyst. Colloids and Surfaces B: Biointerfaces, 77, 82-89.
http://dx.doi.org/10.1016/j.colsurfb.2010.01.010
[22] Lin, Y.-C., Bai, H., Lin, C.-H. and Wu, J.-F. (2013) Applying Surface Charge Attraction to Synthesizing TiO2/Ag Composition for VOCs Photodegradation. Aerosol and Air Quality Research, 13, 1512-1520.
[23] Choi, H., Jung Y. and Kim, S. (2004) Characterization of Raman Spectra of Size-Selected TiO2 Nanoparticles by Two-Dimensional Correlation Spectroscopy. Bulletin of the Korean Chemical Society, 25, 426-428.
http://dx.doi.org/10.5012/bkcs.2004.25.3.426
[24] Chen, X. and Mao, S. (2007) Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107, 2891-2959.
http://dx.doi.org/10.1021/cr0500535
[25] Tsivadze, A., Ionova, G., Mikhalko, V., Ionova, I. and Gerasimova, G. (2013) Plasmon Properties of Silver Spherical Nanoparticles and Films. Protection of Metals and Chemistry of Surfaces, 49, 169-172.
http://dx.doi.org/10.1134/S207020511302010X
[26] Madigan, M., Martinko, J. and Parker, J. (2003) Brock Biology of Microorganisms. 10th Edition, Pearson, Prentice Hall, New York.
[27] Wen, L., Xiao, X., Qing, S., Hai, Z., You, O. and Yi, C. (2010) Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85, 1115-1122.
http://dx.doi.org/10.1007/s00253-009-2159-5                eww141023lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...