跳至主要内容

Reducing Participation Bias in Case-Control Studies: Type 1 Diabetes in Children and Stroke in Adults

Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48508#.VDtHL1fHRK0

Background: Case-control studies have been used extensively in determining the aetiology of rare diseases. However, case-control studies often suffer from participation bias in the control group, resulting in biased odds ratios that cause problems with interpretation. Participation bias can be hard to detect and is often ignored. Methods: Population data can be used in place of the possibly biased control group, to investigate whether participation bias may have affected the results in previous studies, or in place of controls in future studies. We demonstrate this approach by reanalysing and comparing the results of two case-control studies: Type 1 diabetes in Yorkshire children and stroke in Indian adults. Findings: Using population data to represent the control groups reduced the width of the confidence intervals given in the original studies and confirmed the findings for the two diabetes risk factors used; caesarean birth (odds ratio (OR) = 2.12 (1.53, 2.95) compared with 1.84 (1.09, 3.10)) and amniocentesis (OR = 3.38 (2.09, 5.47) compared with 3.85 (1.34, 11.04)). The three stroke risk factors investigated were found to have increased odds ratios when using population data; hypertension (OR = 5.645 (5.639, 5.650) compared with 3.807 (2.114, 6.856)), diabetes (OR = 12.212 (12.200, 12.224) compared with 3.473 (1.757, 6.866)) and smoking (OR = 5.701 (5.696, 5.707) compared with 2.242 (1.255, 4.005)). Interpretation: Participation bias can greatly affect the results of a study and cause some potential risk factors to be over-or underestimated. This approach allows previous studies to be investigated for participation bias and presents an alternative to a control group in future studies, while improving precision.
Cite this paper
Keeble, C. , Barber, S. , Baxter, P. , Parslow, R. and Law, G. (2014) Reducing Participation Bias in Case-Control Studies: Type 1 Diabetes in Children and Stroke in Adults. Open Journal of Epidemiology, 4, 129-134. doi: 10.4236/ojepi.2014.43018
 

[1] Keeble, C., Barber, S., Law, G.R. and Baxter, P.D. (2013) Participation Bias Assessment in Three High Impact Journals. Sage Open, 3. http://dx.doi.org/10.1177/2158244013511260
[2] Haapea, M., Miettunen, J., Veijola, J., Lauronen, E., Tanskanen, P. and Isohanni, M. (2007) Nonparticipation May Bias the Results of a Psychiatric Survey—An Analysis from the Survey Including Magnetic Resonance Imaging within the Northern Finland 1966 Birth Cohort. Social Psychiatry and Psychiatric Epidemiology, 42, 403-409.
http://dx.doi.org/10.1007/s00127-007-0178-z
[3] Lopez, R., Frydenberg, M. and Baelum, V. (2008) Non-Participation and Adjustment for Bias in Casecontrol Studies of Periodontitis. European Journal of Oral Sciences, 116, 405-411.
http://dx.doi.org/10.1111/j.1600-0722.2008.00567.x
[4] Tam, C.C., Higgins, C.D. and Rodrigues, L.C. (2011) Effect of Reminders on Mitigating Participation Bias in a Case-Control Study. BMC Medical Research Methodology, 11, 33.
http://dx.doi.org/10.1186/1471-2288-11-33
[5] Mezei, G. and Kheifets, L. (2006) Selection Bias and Its Implications for Case-Control Studies: A Case Study of Magnetic Field Exposure and Childhood Leukaemia. International Journal of Epidemiology, 35, 397-406.
[6] Eckmann, C., Wasserman, M., Latif, F., Roberts, G. and Beriot-Mathiot, A. (2013) Increased Hospital Length of Stay Attributable to Clostridium Difficile Infection in Patients with Four Co-Morbidities: An Analysis of Hospital Episode Statistics in Four European Countries. European Journal of Health Economics, 14, 835-846.
http://dx.doi.org/10.1007/s10198-013-0498-8
[7] Childs, T., Scowcroft, A. and Todd, S. (2013) Gender and Regional Differences in the Treatment for Hypertension: A Pharmacoepidemiological Analysis of the General Practice Research Database (GPRD) in the Context of Hypertension in Atrial Fibrillation (AF) Patients. Journal of Human Hypertension, 27, 648.
[8] Crossfield, S.S.R. and Clamp, S.E. (2013) Electronic Health Records Research in a Health Sector Environment with Multiple Provider Types. HEALTHINF 2013 Proceedings of the International Conference on Health Informatics.
[9] Sortso, C., Thysegen, L.C. and Bronnum-Hansen, H. (2011) Database on Danish Population-Based Registers for Public Health and Welfare Research. Scandinavian Journal of Public Health, 39, 17-19.
http://dx.doi.org/10.1177/1403494811399171
[10] Ludvigsson, J.F., Otterblad-Olausson, P., Pettersson, B.U. and Ekbom, A. (2009) The Swedish Personal Identity Num- ber: Possibilities and Pitfalls in Healthcare and Medical Research. European Journal of Epidemiology, 24, 659-667.
http://dx.doi.org/10.1007/s10654-009-9350-y
[11] McKinney, P.A., Parslow, R., Gurney, K., Law, G., Bodansky, H.J. and Williams, D.R.R. (1997) Antenatal Risk Factors for Childhood Diabetes Mellitus; A Case-Control Study of the Medical Record Data in Yorkshire, UK. Diabetologia, 40, 933-939.
[12] Sorganvi, V., Kulkarni, M.S., Kadeli, D. and Atherga, S. (2014) Risk Factors for Stroke: A Case Control Study. IJCRR, 6, 46-52.
[13] Birth Choice UK (2011) Graphs Of Historical Caesarean Section Rates. www.birthchoiceuk.com
[14] Cambridge Fetal Care (2013) Amniocentesis Test. www.fetalcare.co.uk
[15] Office of Population Censuses and Surveys (1995) Subnational Population Projections, Series PP3, No. 9, Table 5: 1993-Based Population Projections, 1993-2016: Sex and Quinary Age-Groups, p. 61.
[16] World Health Statistics 2012 (2012) Page 113.
http://apps.who.int/iris/bitstream/10665/44844/1/9789241564441_eng.pdf?ua=1
[17] International Diabetes Federation, (2014) Diabetes: Facts and Figures.
http://www.idf.org/worlddiabetesday/toolkit/gp/facts-figures
[18] World Bank, (2014) Smoking prevalence, females (% of Adults).
http://data.worldbank.org/indicator/SH.PRV.SMOK.FE
[19] World Bank (2014) Smoking Prevalence, Males (% of Adults).
http://data.worldbank.org/indicator/SH.PRV.SMOK.MA
[20] World Bank (2014) Population (Total). http://data.worldbank.org/indicator/SP.POP.TOTL
[21] Rightdiagnosis.com (2014) Statistics by Country for Stroke.
http://www.rightdiagnosis.com/s/stroke/stats-country.htm.
[22] R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
[23] Berkson, J. (1946) Limitations of the Application of Fourfold Table Analysis to Hospital Data. Biometrics Bulletin, 2, 47-53. http://dx.doi.org/10.2307/3002000                                                  eww141013lx

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

Location Optimization of a Coal Power Plant to Balance Costs against Plant’s Emission Exposure

Fuel and its delivery cost comprise the biggest expense in coal power plant operations. Delivery of electricity from generation to consumers requires investment in power lines and transmission grids. Placing a coal power plant or multiple power plants near dense population centers can lower transmission costs. If a coalmine is nearby, transportation costs can also be reduced. However, emissions from coal plants play a key role in worsening health crises in many countries. And coal upon combustion produces CO 2 , SO 2 , NO x , CO, Metallic and Particle Matter (PM10 & PM2.5). The presence of these chemical compounds in the atmosphere in close vicinity to humans, livestock, and agriculture carries detrimental health consequences. The goal of the research was to develop a methodology to minimize the public’s exposure to harmful emissions from coal power plants while maintaining minimal operational costs related to electric distribution losses and coal logistics. The objective was...

Evaluation of the Safety and Efficacy of Continuous Use of a Home-Use High-Frequency Facial Treatment Appliance

At present, many home-use beauty devices are available in the market. In particular, many products developed for facial treatment use light, e.g., a flash lamp or a light-emitting diode (LED). In this study, the safety of 4 weeks’ continuous use of NEWA TM , a high-frequency facial treatment appliance, every alternate day at home was verified, and its efficacy was evaluated in Japanese individuals with healthy skin aged 30 years or older who complained of sagging of the facial skin.  Transepidermal water loss (TEWL), melanin levels, erythema levels, sebum secretion levels, skin color changes and wrinkle improvement in the facial skin were measured before the appliance began to be used (study baseline), at 2 and 4 weeks after it had begun to be used, and at 2 weeks after completion of the 4-week treatment period (6 weeks from the study baseline). In addition, data obtained by subjective evaluation by the subjects themselves on a visual analog scale (VAS) were also analyzed. Fur...