Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50346#.VDskCVfHRK1
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50346#.VDskCVfHRK1
Author(s)
We consider two problems from stability theory of
matrix polytopes: the existence of common quadratic Lyapunov functions
and the existence of a stable member. We show the applicability of the
gradient algorithm and give a new sufficient condition for the second
problem. A number of examples are considered.
KEYWORDS
Cite this paper
Yılmaz, Ş. and Büyükköroğlu, T. (2014) On Two Problems for Matrix Polytopes. Applied Mathematics, 5, 2650-2656. doi: 10.4236/am.2014.517253.
[1] |
Boyd, S. and Yang, Q. (1989)
Structured and Simultaneous Lyapunov Functions for System Stability
Problems. International Journal of Control, 49, 2215-2240. http://dx.doi.org/10.1080/00207178908559769 |
[2] |
Büyükköroglu, T., Esen, Ö. and
Dzhafarov, V. (2011) Common Lyapunov Functions for Some Special Classes
of Stable Systems. IEEE Transactions on Automatic Control, 56,
1963-1967. http://dx.doi.org/10.1109/tac.2011.2137510 |
[3] |
Cheng, D., Guo, L. and Huang, J.
(2003) On Quadratic Lyapunov Functions. IEEE Transactions on Automatic
Control, 48, 885-890. http://dx.doi.org/10.1109/tac.2003.811274 |
[4] |
Dayawansa, W.P. and Martin, C.F.
(1999) A Converse Lyapunov Theorem for a Class of Dynamical Systems
Which Undergo Switching. IEEE Transactions on Automatic Control, 44,
751-760. http://dx.doi.org/10.1109/9.754812 |
[5] | King, C. and Shorten, R. (2004) A Singularity Test for the Existence of Common Quadratic Lyapunov Functions for Pairs of Stable LTI Systems. Proceedings of the American Control Conference, Boston, 30 June-2 July 2004, 3881-3884. |
[6] |
Mason, O. and Shorten, R. (2006)
On the Simultaneous Diagonal Stability of a Pair of Positive Linear
Systems. Linear Algebra and Its Applications, 413, 13-23. http://dx.doi.org/10.1016/j.laa.2005.07.019 |
[7] |
Narendra, K.S. and Balakrishnan,
J. (1994) A Common Lyapunov Function for Stable LTI Systems with
Commuting A-Matrices. IEEE Transactions on Automatic Control, 39,
2469-2471. http://dx.doi.org/10.1109/9.362846 |
[8] |
Shorten, R.N. and Narendra, K.S.
(2002) Necessary and Sufficient Conditions for the Existence of a
Common Quadratic Lyapunov Function for a Finite Number of Stable Second
Order Linear Time-Invariant Systems. International Journal of Adaptive
Control and Signal Processing, 16, 709-728. http://dx.doi.org/10.1002/acs.719 |
[9] |
Shorten, R.N., Mason, O.,
Cairbre, F.O. and Curran, P. (2004) A Unifying Framework for the SISO
Circle Criterion and Other Quadratic Stability Criteria. International
Journal of Control, 77, 1-8.
http://dx.doi.org/10.1080/00207170310001633321 |
[10] |
Liberzon, D. and Tempo, R.
(2004) Common Lyapunov Functions and Gradient Algorithms. IEEE
Transactions on Automatic Control, 49, 990-994. http://dx.doi.org/10.1109/tac.2004.829632 |
[11] |
Polyak, B.T. and Shcherbakov,
P.S. (2005) Hard Problems in Linear Control Theory: Possible Approaches
to Solution. Automation and Remote Control, 66, 681-718. http://dx.doi.org/10.1007/s10513-005-0115-0 |
[12] |
Polyak, B.T. and Shcherbakov,
P.S. (1999) Numerical Search of Stable or Unstable Element in Matrix or
Polynomial Families: A Unified Approach to Robustness Analysis and
Stabilization. Robustness in Identification and Control Lecture Notes in
Control and Information Sciences, 245, 344-358. http://dx.doi.org/10.1007/bfb0109879 |
[13] | Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis. Cambridge University Press, Cambridge. eww141013lx |
评论
发表评论