On a New Elementary Particle from the Disintegration of the Symplectic 't Hooft-Veltman-Wilson Fractal Spacetime
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50539#.VESjX1fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50539#.VESjX1fHRK0
Author(s)
't Hooft-Veltman
Wilson dimensional regularization depends crucially upon Borel summability
which entails strong links to the modern mathematical theory of transfinite
sets and consequently to the fractal-Cantorian spacetime proposal of Ord-Nottale-El
Naschie. Starting from the above, we interpret the main step of the
mathematical analysis in terms of elementary particles interaction. Thus 't
Hooft-Veltman “perturbation” parameter which measures the deviation of the
regulated space from the four dimensionality of spacetime is interpreted as an
elementary particle with a topological mass charge equal to 0.18033989, i.e. double the magnitude of Hardy’s
quantum entanglement. In turn, Hardy’s quantum entanglement which may be
interpreted geometrically as a consequence of the zero set embedded in an empty
set could also be interpreted as an exchange of pseudo elementary particles
with a topological mass charge equal to Hardy’s entanglement
where
is the Hausdorff dimension of the zero set of
the corresponding 't Hooft-Veltman spacetime.
KEYWORDS
Cite this paper
El Naschie, M. (2014) On a New Elementary Particle
from the Disintegration of the Symplectic 't Hooft-Veltman-Wilson
Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, 216-221. doi: 10.4236/wjnst.2014.44027.
[1] |
‘tHooft, G. (1973) Dimensional Regularization and the Renormalization Group. Nuclear Physics B, 61, 455-468. http://dx.doi.org/10.1016/0550-3213(73)90376-3 |
[2] |
‘tHooft, G. and Veltman, M. (1972) Regularization and Renormalization of Gauge Fields. Nuclear Physics B, 44, 189213. http://dx.doi.org/10.1016/0550-3213(72)90279-9 |
[3] |
Wilson, K.G. and Kogul, J.
(1974) The Renormalization Group and the E Expansion. Physics Reports,
12, 75-199. http://dx.doi.org/10.1016/0370-1573(74)90023-4 |
[4] |
El Naschie, M.S. (2014) Cosmic Dark Energy from ‘t
Hooft’s Dimensional Regularization and Witten’s Topological Quantum
Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91. http://dx.doi.org/10.4236/jqis.2014.42008 |
[5] | El Naschie, M.S. (2014) Asymptotically Safe Pure Gravity as the Source of Dark Energy of the Vacuum. Astrophysics and Space Science, 2, 12-15. |
[6] |
Wilson, K.G. (1974) Critical Phenomena in 3.99 Dimensions. Physica, 73, 119-128. http://dx.doi.org/10.1016/0031-8914(74)90229-8 |
[7] | El Naschie, M.S. (2014) Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. American Journal of Modern Physics, 3, 82-87. http://dx.doi.org/10.11648/j.ajmp.20140302.17 |
[8] |
Wilson, K.G. and Fisher, M.E.
(1972) Critical Exponents in 3.99 Dimensions. Physical Review Letters,
28, 240. http://dx.doi.org/10.1103/PhysRevLett.28.240 |
[9] | El Naschie, M.S. (2001) On ‘tHooft Dimensional Regularization in E-Infinity Space (with Letter from R. Feynman to G. Ord Dated 1982). Chaos, Solitons & Fractals, 30, 855-858. |
[10] | Brezin, E. (2014) Wilson Renormalization Group: A Paradigmatic Shift. arXiv:1402.34337VI[physics.hist-ph] |
[11] | Polyakov, A.M. (1970) Conformal Symmetry of Critical Fluctuation. JETP Letters, 12, 381-383. |
[12] |
El Naschie, M.S. (2001) ’t Hooft
Dimensional Regularization Implies Transfinite Heterotic String Theory
and Dimensional Transmutation. In: Sidharth, B.G. and Altaisky, M.V.,
Eds., Frontiers of Fundamental Physics 4, Springer, Berlin, 81-86. http://dx.doi.org/10.1007/978-1-4615-1339-1_7 |
[13] |
Marek-Crnjac, L. (2009)
Partially Ordered Sets, Transfinite Topology and the Dimension of
Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 42,
1796-1799. http://dx.doi.org/10.1016/j.chaos.2009.03.094 |
[14] |
Zhong, T. (2009) From the
Numerics of Dynamics to the Dynamics of Numeric and Visa Versa in High
Energy Particle Physics. Chaos, Solitons & Fractals, 42, 1780-1783. http://dx.doi.org/10.1016/j.chaos.2009.03.079 |
[15] | Graham, L. and Kantor, J. (2009) Naming Infinity. Harvard University Press, Cambridge. |
[16] |
El Naschie, M.S. (2004) A Review
of E-Infinity Theory and the Mass Spectrum of High Energy Particle
Physics. Chaos, Solitons & Fractals, 19, 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9 |
[17] |
El Naschie, M.S. (2012)
E-Infinity High Energy Communications Nos. 71-90. El Naschie
Watch—Genuine Scientific Blog for E-Infinity, Noncommutative Geometry,
Fractal Spacetime, Innovative Geometrical and Number Theoretical Methods
in High Energy Physics and Quantum Gravity. http://www.elnaschiewatch.com |
[18] |
Ho, M.-W. (2014) The Story of
Phi, Part 1; Watching the Daises Grow, Part 2; Golden Music of The
Brain, Part 3; Golden Cycles and Organic Spacetime, Part 4; Golden
Geometry of E-infinity Fractal Spacetime, Part 5; Science of the
Organism. Institute of Science in Society. www.i-sis.org.uk |
[19] | ISIS Report (2014) E-Infinity Spacetime, Quantum Paradoxes and Quantum Gravity. Journal of the Institute of Science in Society, Reports Nos. 03/03/14 to 07/04/14. |
[20] | May, P. (1977) E-Infinity Spaces and E-Infinity Ring Spectra. Lecture Notes in Mathematics. Springer, Berlin. |
[21] |
El Naschie, M.S. (2004) The
Symplectic Vacuum, Exotic Quasi Particles and Gravitational Instantons.
Chaos, Solitons & Fractals, 22, 1-11. http://dx.doi.org/10.1016/j.chaos.2004.01.015 |
[22] | El Naschie, M.S. (2004) Topological Defects in the Symplectic Vacuum Anomalous Positron Production and Gravitational Instantons. International Journal of Modern Physics E, 13, 835-849. |
[23] |
El Naschie, M.S. (2004) New
Elementary Particles as a Possible Product of the Disintegration of the
Symplectic Vacuum. Chaos, Solitons & Fractals, 20, 905-913. http://dx.doi.org/10.1016/j.chaos.2003.10.022 |
[24] |
Shalaby, A.M. (2007) The Fractal
Self-Similar Borel Algorithm for the Effective Potential of the Scalar
Field Theory in One Time plus One Space Dimensions. Chaos, Solitons
& Fractals, 34, 709-716. http://dx.doi.org/10.1016/j.chaos.2006.08.046 |
[25] | El Naschie, M.S. (2014) Rindler Space Derivation of Dark Energy. Journal of Modern Physics & Applications, 2014, 6. |
[26] |
El Naschie, M.S. (2008)
Kaluza-Klein Unification—Some Possible Extensions. Chaos, Solitons &
Fractals, 37, 16-22. http://dx.doi.org/10.1016/j.chaos.2007.09.079 |
[27] |
El Naschie, M.S. (2013) Dark
Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian
Multiplier Method. Journal of Modern Physics, 4, 757-760. http://dx.doi.org/10.4236/jmp.2013.46103 |
[28] |
Marek-Crnjac, L., El Naschie,
M.S. and He, J.-H. (2013) Chaotic Fractals at the Relativistic Quantum
Physics and Cosmology. International Journal of Modern Nonlinear Theory
& Applications, 2, 78-88. http://dx.doi.org/10.4236/ijmnta.2013.21A010 |
[29] |
El Naschie, M.S. (2014) Pinched
Material Einstein Space-Time Produces Accelerated Cosmic Expansion.
International Journal of Astronomy and Astrophysics, 4, 80-90. http://dx.doi.org/10.4236/ijaa.2014.41009 |
[30] |
El Naschie, M.S., Olsen, S., He,
J.-H., Nada, S., Marek-Crnjac, L. and Helal, A. (2012) On the Need for
Fractal Logic in High Energy Quantum Physics. International Journal of
Modern Nonlinear Theory & Applications, 2, 84-92. http://dx.doi.org/10.4236/ijmnta.2012.13012 |
[31] |
El Naschie, M.S. (2008) From
Classical Gauge Theory Back to Weyl Scaling via E-infinity spacetime.
Chaos, Solitons & Fractals, 38, 980-985. http://dx.doi.org/10.1016/j.chaos.2008.05.017 |
[32] |
Marek-Crnjac, L. (2009) A
Feynman Path Integral-Like Method for Deriving the Four Dimensionality
of Spacetime from First Principles. Chaos, Solitons & Fractals, 41,
2471-2473. http://dx.doi.org/10.1016/j.chaos.2008.09.014 |
[33] |
Helal, M.A., Marek-Crnjac, L.
and He, J.-H. (2013) The Three Page Guide to the Most Important Results
of M.S. El Nashie’s Research in E-Infinity Quantum Physics and
Cosmology. Open Journal of Microphysics, 3, 141-145. http://dx.doi.org/10.4236/ojm.2013.34020 |
[34] | Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego. |
[35] | Nottale, L. (2011) Scale Relativity and Fractal Space-Time. Imperial College Press, London. |
[36] | El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53. |
[37] |
El Naschie, M.S. (2008) On the
Fundamental Equations of the Constants of Nature. Chaos, Solitons &
Fractals, 35, 320-323. http://dx.doi.org/10.1016/j.chaos.2007.06.110 |
[38] | El Naschie, M.S. (2014) To Dark Energy Theory from a Cosserat-Like Model of Spacetime. In: Problems of Nonlinear Analysisin Engineering Systems, Kazan Press, Kazan, 20. |
[39] |
El Naschie, M.S., Marek-Crnjac,
L., Helal, M.A. and He, J.-H. (2014) A Topological Magueijo-Smolin
Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the
Dark Energy of Pure Gravity. Applied Mathematics, 5, 1780-1790. http://dx.doi.org/10.4236/am.2014.512171 eww141020lx |
评论
发表评论