Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50731#.VEm2YFfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50731#.VEm2YFfHRK0
Author(s)
Amplifiers are essential building blocks of a
majority of the mixed signal circuits that are used in the development
of cognitive computing architectures. Their implementation and use is
challenged by the second order effects that dominate the MOSFET
operations with reduction in the technology size and scale. The ability
to program the amplifiers once fabricated becomes an even more
challenging problem as it warrants the use of multiple circuit
components that lowers circuit performance and in turn outweighs the
advantages of generalisation abilities. In this paper, a reconfigurable
set of amplifier circuits are proposed based on quantised conductance
devices in combination with MOSFET devices. The presented circuits form
the basic configurations for the memristor based amplifiers, and show
promising performance results in terms of power dissipation, on-chip
area and THD values.
KEYWORDS
Cite this paper
Ibrayev, T. , Fedorova, I. , Maan, A. and James, A. (2014) On Design of Memristive Amplifier Circuits. Circuits and Systems, 5, 265-273. doi: 10.4236/cs.2014.511028.
[1] |
Rajendran, J., Manem, H., Karri,
R. and Rose, G.S. (2010) Memristor Based Programmable Threshold Logic
Array. Proceedings of the 2010 IEEE/ACM International Symposium on
Nanoscale Architectures, Anaheim, 17-18 June 2010, 5-10. http://dx.doi.org/10.1109/NANOARCH.2010.5510933 |
[2] |
Ng, K.A. and Chan, P.K. (2005) A
CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications.
IEEE Transactions on Circuits and Systems I: Regular Papers, 52,
2335-2347. http://dx.doi.org/10.1109/TCSI.2005.854141 |
[3] | Mallinson, M. and Spitalny, P. (1993) Programmable Gain Amplifier. US Patent No. 5233309. US Patent and Trademark Office, Washington DC. |
[4] | Hall, T.S., et al. (2005) Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 2298-2307. |
[5] |
Harrison, R.R., Bragg, J.A.,
Hasler, P., Minch, B.A. and Deweerth, S.P. (2001) A CMOS Programmable
Analog Memory-Cell Array Using Floating-Gate Circuits. IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing, 48,
4-11. http://dx.doi.org/10.1109/82.913181 |
[6] |
Türel, Ö. and Likharev, K.
(2003) Cross Nets: Possible Neuromorphic Networks Based on Nanoscale
Components. International Journal of Circuit Theory and Applications,
31, 37-53. http://dx.doi.org/10.1002/cta.223 |
[7] |
Afifi, A., Ayatollahi, A. and
Raissi, F. (2009) STDP Implementation Using Memristive Nanodevice in
CMOS-Nano Neuromorphic Networks. IEICE Electronics Express, 6, 148-153. http://dx.doi.org/10.1587/elex.6.148 |
[8] | Afifi, A., Ayatollahi, A. and Raissi, F. (2009) Implementation of Biologically Plausible Spiking Neural Network Models on the Memristor Crossbar-Based CMOS/Nano Circuits. European Conference on Circuit Theory and Design, ECCTD 2009, Antalya, 23-27 August 2009, 563-566. |
[9] | Turel, O., Lee, J.H., Ma, X. and Likharev, K.K. (2004) Nanoelectronic Neuromorphic Networks (Crossnets): New Results. 2004 IEEE International Joint Conference on Neural Networks, Budapest, 25-29 July 2004. |
[10] |
Likharev, K., Mayr, A., Muckra,
I. and Türel, ?. (2003) CrossNets: High-Performance Neuromorphic
Architectures for CMOL Circuits. Annals of the New York Academy of
Sciences, 1006, 146-163.
http://dx.doi.org/10.1196/annals.1292.010 |
[11] |
Türel, Ö., Lee, J.H., Ma, X. and
Likharev, K.K. (2004) Neuromorphic Architectures for Nanoelectronic
Circuits. International Journal of Circuit Theory and Applications, 32,
277-302. http://dx.doi.org/10.1002/cta.282 |
[12] | Alspector, J. (1989) Neuromorphic Learning Networks. US Patent No. 4874963. |
[13] |
Indiveri, G., Chicca, E. and
Douglas, R.J. (2009) Artificial Cognitive Systems: From VLSI Networks of
Spiking Neurons to Neuromorphic Cognition. Cognitive Computation, 1,
119-127. http://dx.doi.org/10.1007/s12559-008-9003-6 |
[14] | Schemmel, J., Fieres, J. and Meier, K. (2008) Wafer-Scale Integration of Analog Neural Networks. IEEE International Joint Conference on Neural Networks, IJCNN 2008, Hong Kong, 1-8 June 2008, 431-438. |
[15] | Zacek, K. and Nikolic, L. Analog Neural Networks. Technical University in Brno, 611. |
[16] |
Widrow, B., Rumelhart, D.E. and
Lehr, M.A. (1994) Neural Networks: Applications in Industry, Business
and Science. Communications of the ACM, 37, 93-105. http://dx.doi.org/10.1145/175247.175257 |
[17] |
Boser, B.E., Sackinger, E.,
Bromley, J., Le Cun, Y. and Jackel, L.D. (1991) An Analog neural Network
Processor with Programmable Topology. IEEE Journal of Solid-State
Circuits, 26, 2017-2025.
http://dx.doi.org/10.1109/4.104196 |
[18] |
Schemmel, J., Hohmann, S.,
Meier, K. and Schürmann, F. (2004) A Mixed-Mode Analog Neural Network
Using Current-Steering Synapses. Analog Integrated Circuits and Signal
Processing, 38, 233-244.
http://dx.doi.org/10.1023/B:ALOG.0000011170.92377.6e |
[19] |
Adhikari, S.P., Yang, C., Kim,
H. and Chua, L.O. (2012) Memristor Bridge Synapse-Based Neural Network
and Its Learning. IEEE Transactions on Neural Networks and Learning
Systems, 23, 1426-1435.
http://dx.doi.org/10.1109/TNNLS.2012.2204770 |
[20] | Xiang, L., Yang, Z., Shujuan, W. and Guofu, Z. (2011) A Method for Analog Circuits Fault Diagnosis by Neural Network and Virtual Instruments. 2011 3rd International Workshop on Intelligent Systems and Applications (ISA), Wuhan, 28-29 May 2011, 1-5. |
[21] | Stoica, A., Keymeulen, D., Zebulum, R., Thakoor, A., Daud, T., Klimeck, Y., et al. (2000) Evolution of Analog Circuits on Field Programmable Transistor Arrays. The 2nd NASA/DoD Workshop on Evolvable Hardware, Palo Alto, 13-15 July 2000, 99-108. |
[22] |
Giannini, V., Craninckx, J.,
D’Amico, S. and Baschirotto, A. (2007) Flexible Baseband Analog Circuits
for Software-Defined Radio Front-Ends. IEEE Journal of Solid-State
Circuits, 42, 1501-1512.
http://dx.doi.org/10.1109/JSSC.2007.899103 |
[23] |
El Gamal, A. and Eltoukhy, H.
(2005) CMOS Image Sensors. IEEE Circuits and Devices Magazine, 21, 6-20.
http://dx.doi.org/10.1109/MCD.2005.1438751 |
[24] | Cabric, D., Mishra, S.M. and Brodersen, R.W. (2004) Implementation Issues in Spectrum Sensing for Cognitive Radios. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, 1, 772-776. |
[25] |
Le, B., Rondeau, T.W., Reed,
J.H. and Bostian, C.W. (2005) Analog-to-Digital Converters. IEEE Signal
Processing Magazine, 22, 69-77. http://dx.doi.org/10.1109/MSP.2005.1550190 |
[26] |
Overney, F., Rufenacht, A.,
Braun, J., Jeanneret, B. and Wright, P.S. (2011) Characterization of
Metrological Grade Analog-to-Digital Converters Using a Programmable
Josephson Voltage Standard. IEEE Transactions on Instrumentation and
Measurement, 60, 2172-2177. http://dx.doi.org/10.1109/TIM.2011.2113950 |
[27] | Fukami, S., Ishiwata, N., Numata, H., Ohshima, N., Sugibayashi, T. and Suzuki, T. (2011) Magnetic Memory Cell, Magnetic Random Access Memory, and Data Read/Write Method for Magnetic Random Access Memory. US Patent No. 7929342. |
[28] |
McConaghy, T., Palmers, P.,
Steyaert, M. and Gielen, G.G. (2011) Trustworthy Genetic
Programming-Based Synthesis of Analog Circuit Topologies Using
Hierarchical Domain-Specific Building Blocks. IEEE Transactions on
Evolutionary Computation, 15, 557-570. http://dx.doi.org/10.1109/TEVC.2010.2093581 |
[29] |
Mehonic, A., Vrajitoarea, A.,
Cueff, S., Hudziak, S., Howe, H., Labbé, C., et al. (2013) Quantum
Conductance in Silicon Oxide Resistive Memory Devices. Scientific
Reports, 3, Article No. 2708. http://dx.doi.org/10.1038/srep02708 |
[30] | Biolek, Z., Biolek, D. and Biolková, V. (2009) SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering, 18, 210-214. |
[31] | Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S. (2008) The Missing Memristor Found. Nature, 453, 8083. eww141024lx |
评论
发表评论