Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50797#.VE3cRVfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50797#.VE3cRVfHRK0
Author(s)
This
article reviews the recent developments in microfluidic technologies for in vitro cancer diagnosis. We summarize
the working principles and experimental results of microfluidic platforms for
cancer cell detection, and separation based on magnetic activated
micro-sorting, and differences in cellular biophysics (e.g., cell size and
dielectrophoresis (DEP)).
KEYWORDS
Cite this paper
Saeed, O. , Li, R. and Deng, Y. (2014) Microfluidic Approaches for Cancer Cell Separation: Review. Journal of Biomedical Science and Engineering, 7, 1005-1018. doi: 10.4236/jbise.2014.712098.
[1] | Ruddon, R.W. and Ebrary Inc. (2007) Cancer Biology. 3rd Edition, Oxford University Press, New York. |
[2] |
Jemal, A., Siegel, R., Xu, J.Q.
and Ward, E. (2010) Cancer Statistics. A Cancer Journal for Clinicians,
60, 277-300. http://dx.doi.org/10.3322/caac.20073 |
[3] |
Bannasch, P. (1992) Cancer Diagnosis: Early Detection. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-76899-6 |
[4] | Dunn, B.K., Verma, M. and Umar, A. (2003) Epigenetics in Cancer Prevention: Early Detection and Risk Assessment. Annals of the New York Academy of Sciences, 983, 1-4. |
[5] |
Armakolas, A., Panteleakou, Z.,
Nezos, A., Tsouma, A., Skondra, M., Lembessis, P., Pissimissis, N. and
Koutsilieris, M. (2010) Detection of the Circulating Tumor Cells in
Cancer Patients. Future Oncology, 6, 1849-1856. http://dx.doi.org/10.2217/fon.10.152 |
[6] |
Zieglschmid, V., Hollmann, C.
and Bocher, O. (2005) Detection of Disseminated Tumor Cells in
Peripheral Blood. Critical Reviews in Clinical Laboratory Sciences, 42,
155-196. http://dx.doi.org/10.1080/10408360590913696 |
[7] |
Young, E.W.K. and Beebe, D.J.
(2010) Fundamentals of Microfluidic Cell Culture in Controlled
Microenvironments. Chemical Society Reviews, 39, 1036-1048. http://dx.doi.org/10.1039/b909900j |
[8] |
Gascoyne, P.R.C. and Vykoukal,
J. (2002) Particle Separation by Dielectrophoresis. Electrophoresis, 23,
1973-1983. http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1 |
[9] |
Gossett, D.R., Weaver, W.M.,
Mach, A.J., Hur, S.C., Tse, H.T.K., Lee, W., Amini, H. and Di Carlo, D.
(2010) Label-Free Cell Separation and Sorting in Microfluidic Systems.
Analytical and Bioanalytical Chemistry, 397, 3249-3267. http://dx.doi.org/10.1007/s00216-010-3721-9 |
[10] |
Didar, T.F. and Tabrizian, M.
(2010) Adhesion Based Detection, Sorting and Enrichment of Cells in
Microfluidic Lab-on-Chip Devices. Lab on a Chip, 10, 3043-3053. http://dx.doi.org/10.1039/c0lc00130a |
[11] |
Pratt, E.D., Huang, C., Hawkins,
B.G., Gleghorn, J.P. and Kirby, B.J. (2011) Rare Cell Capture in
Microfluidic Devices. Chemical Engineering Science, 66, 1508-1522. http://dx.doi.org/10.1016/j.ces.2010.09.012 |
[12] |
Zborowski, M. and Chalmers, J.J.
(2011) Rare Cell Separation and Analysis by Magnetic Sorting.
Analytical Chemistry, 83, 8050-8056. http://dx.doi.org/10.1021/ac200550d |
[13] |
Du, Z., Colls, N., Cheng, K.H.,
Vaughn, M.W. and Gollahon, L. (2006) Microfluidic-Based Diagnostics for
Cervical Cancer Cells. Biosensors and Bioelectronics, 21, 1991-1995. http://dx.doi.org/10.1016/j.bios.2005.09.005 |
[14] |
Wankhede, S.P., Du, Z., Berg,
J.M., Vaughn, M.W., Dallas, T., Cheng, K.H. and Gollahon, L. (2006) Cell
Detachment Model for an Antibody-Based Microfluidic Cancer Screening
System. Biotechnology Progress, 22, 1426-1433. http://dx.doi.org/10.1021/bp060127d |
[15] |
Du, Z., Cheng, K.H., Vaughn,
M.W., Collie, N.L. and Gollahon, L.S. (2007) Recognition and Capture of
Breast Cancer Cells. Biomed Microdevices, 9, 35-42. http://www.ncbi.nlm.nih.gov/pubmed/17103049 |
[16] |
Nagrath, S., Sequist, L.V.,
Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak,
E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins,
R.G., Haber, D.A. and Toner, M. (2007) Isolation of Rare Circulating
Tumour Cells in Cancer Patients by Microchip Technology. Nature, 450,
1235-1239. http://dx.doi.org/10.1038/nature06385 |
[17] |
Adams, A.A., Okagbare, P.I.,
Feng, J., Hupert, M.L., Patterson, D., Gottert, J., McCarley, R.L.,
Nikitopoulos, D., Murphy, M.C. and Soper, S.A. (2008) Highly Efficient
Circulating Tumor Cell Isolation from Whole Blood and Label-Free
Enumeration Using Polymer-Based Microfluidics with an Integrated
Conductivity Sensor. Journal of the American Chemical Society, 130,
8633-8641. http://dx.doi.org/10.1021/ja8015022 |
[18] |
Maheswaran, S., Sequist, L.V.,
Nagrath, S., Ulkus, L., Brannigan, B., Collura, C.V., Inserra, E.,
Diederichs, S., Iafrate, A.J., Bell, D.W., Digumarthy, S., Muzikansky,
A., Irimia, D., Settleman, J., Tompkins, R.G., Lynch, T.J., Toner, M.
and Haber, D.A. (2008) Detection of Mutations in EGFR in Circulating
Lung-Cancer Cells. The New England Journal of Medicine, 359, 366-377. http://dx.doi.org/10.1056/NEJMoa0800668 |
[19] |
Wang, S.T., Wang, H., Jiao, J.,
Chen, K.J., Owens, G.E., Kamei, K.I., et al. (2009) Three-Dimensional
Nanostructured Substrates toward Efficient Capture of Circulating Tumor
Cells. Angewandte Chemie International Edition, 48, 8970-8973. http://dx.doi.org/10.1002/anie.200901668 |
[20] |
Gleghorn, J.P., Pratt, E.D.,
Denning, D., Liu, H., Bander, N.H., Tagawa, S.T., Nanus, D.M.,
Giannakakou, P.A. and Kirby, B.J. (2010) Capture of Circulating Tumor
Cells from Whole Blood of Prostate Cancer Patients Using Geometrically
Enhanced Differential Immunocapture (GEDI) and a Prostate-Specific
Antibody. Lab on a Chip, 10, 27-29. http://dx.doi.org/10.1039/b917959c |
[21] |
Stott, S.L., Hsu, C.H., Tsukrov,
D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, S.M., Shah,
A.M., Smas, M.E., Korir, G.K., Floyd, F.P., Gilman, A.J., Lord, J.B.,
Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee,
R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A. and Toner, M.
(2010) Isolation of Circulating Tumor Cells Using a
Microvortex-Generating Herringbone-Chip. Proceedings of the National
Academy of Sciences of the United States of America, 107, 18392-18397. http://dx.doi.org/10.1073/pnas.1012539107 |
[22] |
Thierry, B., Kurkuri, M., Shi,
J.Y., Lwin, L.E. and Palms, D. (2010) Herceptin Functionalized
Microfluidic Polydimethylsiloxane Devices for the Capture of Human
Epidermal Growth Factor Receptor 2 Positive Circulating Breast Cancer
Cells. Biomicrofluidics, 4, Article ID: 032205. http://dx.doi.org/10.1063/1.3480573 |
[23] |
Dharmasiri, U., Njoroge, S.K.,
Witek, M.A., Adebiyi, M.G., Kamande, J.W., Hupert, M.L., Barany, F. and
Soper, S.A. (2011) High-Throughput Selection, Enumeration,
Electrokinetic Manipulation, and Molecular Profiling of Low-Abundance
Circulating Tumor Cells Using a Microfluidic System. Analytical
Chemistry, 83, 2301-2309. http://dx.doi.org/10.1021/ac103172y |
[24] |
Kurkuri, M.D., Al-Ejeh, F., Shi,
J.Y., Palms, D., Prestidge, C., Griesser, H.J., Brown, M.P. and
Thierry, B. (2011) Plasma Functionalized PDMS Microfluidic Chips:
Towards Point-of-Care Capture of Circulating Tumor Cells. Journal of
Materials Chemistry, 21, 8841-8848. http://dx.doi.org/10.1039/c1jm10317b |
[25] |
Wang, S.T., Liu, K., Liu, J.A.,
Yu, Z.T.F., Xu, X.W., Zhao, L.B., Lee, T., Lee, E.K., Reiss, J., Lee,
Y.K., Chung, L. W.K., Huang, J.T., Rettig, M., Seligson, D., Duraiswamy,
K.N., Shen, C.K.F. and Tseng, H.R. (2011) Highly Efficient Capture of
Circulating Tumor Cells by Using Nanostructured Silicon Substrates with
Integrated Chaotic Micromixers. Angewandte Chemie International Edition,
50, 3084-3088. http://dx.doi.org/10.1002/anie.201005853 |
[26] | Li, N., Tourovskaia, A. and Folch, A. (2003) Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells. Critical Review in Biomedical Engineering, 31, 423-488. |
[27] |
Zheng, X., Cheung, L.S.,
Schroeder, J.A., Jiang, L. and Zohar, Y. (2011) A High-Performance
Microsystem for Isolating Circulating Tumor Cells. Lab on a Chip, 11,
3269-3276. http://dx.doi.org/10.1039/c1lc20331b |
[28] |
Dharmasiri, U., Balamurugan, S.,
Adams, A.A., Okagbare, P.I., Obubuafo, A. and Soper, S.A. (2009) Highly
Efficient Capture and Enumeration of Low Abundance Prostate Cancer
Cells Using Prostate-Specific Membrane Antigen Aptamers Immobilized to a
Polymeric Microfluidic Device. Electrophoresis, 30, 3289-3300. http://dx.doi.org/10.1002/elps.200900141 |
[29] |
Phillips, J.A., Xu, Y., Xia, Z.,
Fan, Z.H. and Tan, W.H. (2009) Enrichment of Cancer Cells Using
Aptamers Immobilized on a Microfluidic Channel. Analytical Chemistry,
81, 1033-1039. http://dx.doi.org/10.1021/ac802092j |
[30] |
Lin, H.K., Zheng, S.Y.,
Williams, A.J., Balic, M., Groshen, S., Scher, H.I., Fleisher, M.,
Stadler, W., Datar, R.H., Tai, Y.C. and Cote, R.J. (2010) Portable
Filter Based Microdevice for Detection and Characterization of
Circulating Tumor Cells. Clinical Cancer Research, 16, 5011-5018. http://dx.doi.org/10.1158/1078-0432.CCR-10-1105 |
[31] |
Tan, S.J., Lakshmi, R.L., Chen,
P.F., Lim, W.T., Yobas, L. and Lim, C.T. (2010) Versatile Label Free
Biochip for the Detection of Circulating Tumor Cells from Peripheral
Blood in Cancer Patients. Biosensors and Bioelectronics, 26, 1701-1705. http://dx.doi.org/10.1016/j.bios.2010.07.054 |
[32] |
Bhagat, A.A.S., Hou, H.W., Li,
L.D., Lim, C.T. and Han, J.Y. (2011) Pinched Flow Coupled
Shear-Modulated Inertial Microfluidics for High-Throughput Rare Blood
Cell Separation. Lab on a Chip, 11, 1870-1878. http://dx.doi.org/10.1039/c0lc00633e |
[33] |
Hur, S.C., Mach, A.J. and Di
Carlo, D. (2011) High-Throughput Size-Based Rare Cell Enrichment Using
Microscale Vortices. Biomicrofluidics, 5, Article ID: 022206. http://dx.doi.org/10.1063/1.3576780 |
[34] |
Moon, H.S., Kwon, K., Kim, S.I.,
Han, H., Sohn, J., Lee, S. and Jung, H.I. (2011) Continuous Separation
of Breast Cancer Cells from Blood Samples Using Multi-Orifice Flow
Fractionation (MOFF) and Dielectrophoresis (DEP). Lab on a Chip, 11,
1118-1125. http://dx.doi.org/10.1039/c0lc00345j |
[35] |
Zheng, S.Y., Lin, H.K., Lu, B.,
Williams, A., Datar, R., Cote, R.J. and Tai, Y.C. (2011) 3D Microfilter
Device for Viable Circulating Tumor Cell (CTC) Enrichment from Blood.
Biomedical Microdevices, 13, 203-213. http://dx.doi.org/10.1007/s10544-010-9485-3 |
[36] |
Kwon, K.W., Choi, S.S., Lee,
S.H., Kim, B., Lee, S.N., Park, M.C., Kim, P., Hwang, S.Y. and Suh, K.Y.
(2007) Label-Free, Microfluidic Separation and Enrichment of Human
Breast Cancer Cells by Adhesion Difference. Lab on a Chip, 7, 1461-1468.
http://dx.doi.org/10.1039/b710054j |
[37] | Couzon, C., Duperray, A. and Verdier, C. (2009) Critical Stresses for Cancer Cell Detachment in Microchannels. European Biophysics Journal, 38, 1035-1047. |
[38] |
Lincoln, B., Erickson, H.M.,
Schinkinger, S., Wottawah, F., Mitchell, D., Ulvick, S., Bilby, C. and
Guck, J. (2004) Deformability-Based Flow Cytometry. Cytometry Part A,
59A, 203-209. http://dx.doi.org/10.1002/cyto.a.20050 |
[39] |
Guck, J., Schinkinger, S.,
Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson,
H.M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S. and Bilby,
C. (2005) Optical Deformability as an Inherent Cell Marker for Testing
Malignant Transformation and Metastatic Competence. Biophysical Journal,
88, 3689-3698. http://dx.doi.org/10.1529/biophysj.104.045476 |
[40] |
Kim, Y.C., Park, S.J. and Park,
J.K. (2008) Biomechanical Analysis of Cancerous and Normal Cells Based
on Bulge Generation in a Microfluidic Device. Analyst, 133, 1432-1439. http://dx.doi.org/10.1039/b805355c |
[41] |
Hou, H.W., Li, Q.S., Lee,
G.Y.H., Kumar, A.P., Ong, C.N. and Lim, C.T. (2009) Deformability Study
of Breast Cancer Cells Using Microfluidics. Biomedical Microdevices, 11,
557-564. http://dx.doi.org/10.1007/s10544-008-9262-8 |
[42] | Chen, J., Abdelgawad, M., Yu, L.M., Shakiba, N., Chien, W.Y., Lu, Z., Geddie, W.R., Jewett, M.A.S. and Sun, Y. (2011) Electrodeformation for Single Cell Mechanical Characterization. Journal of Micromechanics and Microengineering, 21, Article ID: 054012. |
[43] |
Chen, J., Zheng, Y., Tan, Q.,
Shojaei-Baghini, E., Zhang, Y.L., Li, J., Prasad, P., You, L., Wu, X.Y.
and Sun, Y. (2011) Classification of Cell Types Using a Microfluidic
Device for Mechanical and Electrical Measurement on Single Cells. Lab on
a Chip, 11, 3174-3181. http://dx.doi.org/10.1039/c1lc20473d |
[44] |
Hur, S.C., Henderson-MacLennan,
N.K., McCabe, E.R.B. and Di Carlo, D. (2011) Deformability-Based Cell
Classification and Enrichment Using Inertial Microfluidics. Lab on a
Chip, 11, 912-920. http://dx.doi.org/10.1039/c0lc00595a |
[45] |
Labeed, F.H., Coley, H.M.,
Thomas, H. and Hughes, M.P. (2003) Assessment of Multidrug Resistance
Reversal Using Dielectrophoresis and Flow Cytometry. Biophysical
Journal, 85, 2028-2034. http://dx.doi.org/10.1016/S0006-3495(03)74630-X |
[46] |
Cen, E.G., Dalton, C., Li, Y.L.,
Adamia, S., Pilarski, L.M. and Kaler, K.V.I.S. (2004) A Combined
Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation
Microchip for the Manipulation and Characterization of Human Malignant
Cells. Journal of Microbiological Methods, 58, 387-401. http://dx.doi.org/10.1016/j.mimet.2004.05.002 |
[47] |
Broche, L.M., Labeed, F.H. and
Hughes, M.P. (2005) Extraction of Dielectric Properties of Multiple
Populations from Dielectrophoretic Collection Spectrum Data. Physics in
Medicine and Biology, 50, 2267-2274. http://dx.doi.org/10.1088/0031-9155/50/10/006 |
[48] | Chin, S., Hughes, M.P., Coley, H.M. and Labeed, F.H. (2006) Rapid Assessment of Early Biophysical Changes in K562 Cells during Apoptosis Determined Using Dielectrophoresis. International Journal of Nanomedicine, 1, 333-337. |
[49] | Labeed, F.H., Coley, H.M. and Hughes, M.P. (2006) Differences in the Biophysical Properties of Membrane and Cytoplasm of Apoptotic Cells Revealed Using Dielectrophoresis. Biochimica et Biophysica Acta (BBA), General Subjects, 1760, 922-929. |
[50] |
Broche, L.M., Bhadal, N., Lewis,
M.P., Porter, S., Hughes, M.P. and Labeed, F.H. (2007) Early Detection
of Oral Cancer—Is Dielectrophoresis the Answer? Oral Oncology, 43,
199-203. http://dx.doi.org/10.1016/j.oraloncology.2006.02.012 |
[51] | Coley, H.M., Labeed, F.H., Thomas, H. and Hughes, M.P. (2007) Biophysical Characterization of MDR Breast Cancer Cell Lines Reveals the Cytoplasm Is Critical in Determining Drug Sensitivity. Biochimica et Biophysica Acta (BBA), General Subjects, 1770, 601-608. |
[52] | Duncan, L., Shelmerdine, H., Hughes, M.P., Coley, H.M., Hubner, Y. and Labeed, F.H. (2008) Dielectrophoretic Analysis of Changes in Cytoplasmic Ion Levels Due to Ion Channel Blocker Action Reveals Underlying Differences between Drug-Sensitive and Multidrug-Resistant Leukaemic Cells. Physics in Medicine and Biology, 53, N1-N7. |
[53] |
Shim, S., Gascoyne, P., Noshari,
J. and Hale, K.S. (2011) Dynamic Physical Properties of Dissociated
Tumor Cells Revealed by Dielectrophoretic Field-Flow Fractionation.
Integrative Biology, 3, 850-862. http://dx.doi.org/10.1039/c1ib00032b |
[54] |
Kuo, J.S., Zhao, Y.X., Schiro,
P.G., Ng, L.Y., Lim, D.S.W., Shelby, J.P. and Chiu, D.T. (2010)
Deformability Considerations in Filtration of Biological Cells. Lab on a
Chip, 10, 837-842. http://dx.doi.org/10.1039/b922301k |
[55] |
Altomare, L., Borgatti, M.,
Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R. and Gambari, R.
(2003) Levitation and Movement of Human Tumor Cells Using a Printed
Circuit Board Device Based on Software-Controlled Dielectrophoresis.
Biotechnology and Bioengineering, 82, 474-479. http://dx.doi.org/10.1002/bit.10590 |
[56] |
Das, C.M., Becker, F., Vernon,
S., Noshari, J., Joyce, C. and Gascoyne, P.R.C. (2005) Dielectrophoretic
Segregation of Different Human Cell Types on Microscope Slides.
Analytical Chemistry, 77, 2708-2719. http://dx.doi.org/10.1021/ac048196z |
[57] |
Hu, X.Y., Bessette, P.H., Qian,
J.R., Meinhart, C.D., Daugherty, P.S. and Soh, H.T. (2005)
Marker-Specific Sorting of Rare Cells Using Dielectrophoresis.
Proceedings of the National Academy of Sciences of the United States of
America, 102, 15757-15761. http://dx.doi.org/10.1073/pnas.0507719102 |
[58] |
Park, J., Kim, B., Choi, S.K.,
Hong, S., Lee, S.H. and Lee, K.I. (2005) An Efficient Cell Separation
System Using 3D-Asymmetric Microelectrodes. Lab on a Chip, 5, 1264-1270.
http://dx.doi.org/10.1039/b506803g |
[59] |
Kim, U., Shu, C.W., Dane, K.Y.,
Daugherty, P.S., Wang, J.Y.J. and Soh, H.T. (2007) Selection of
Mammalian Cells Based on Their Cell-Cycle Phase Using Dielectrophoresis.
Proceedings of the National Academy of Sciences of the United States of
America, 104, 20708-20712. http://dx.doi.org/10.1073/pnas.0708760104 |
[60] |
Cristofanilli, M.,
Krishnamurthy, S., Das, C.M., Reuben, J.M., Spohn, W., Noshari, J.,
Becker, F. and Gascoyne, P.R. (2008) Dielectric Cell Separation of Fine
Needle Aspirates from Tumor Xenografts. Journal of Separation Science,
31, 3732-3739. http://dx.doi.org/10.1002/jssc.200800366 |
[61] |
Kang, Y.J., Li, D.Q., Kalams,
S.A. and Eid, J.E. (2008) DC-Dielectrophoretic Separation of Biological
Cells by Size. Biomedical Microdevices, 10, 243-249. http://dx.doi.org/10.1007/s10544-007-9130-y |
[62] |
An, J., Lee, J., Lee, S.H.,
Park, J. and Kim, B. (2009) Separation of Malignant Human Breast Cancer
Epithelial Cells from Healthy Epithelial Cells Using an Advanced
Dielectrophoresis-Activated Cell Sorter (DACS). Analytical and
Bioanalytical Chemistry, 394, 801-809. http://dx.doi.org/10.1007/s00216-009-2743-7 |
[63] |
Gascoyne, P.R.C., Noshari, J.,
Anderson, T.J. and Becker, F.F. (2009) Isolation of Rare Cells from Cell
Mixtures by Dielectrophoresis. Electrophoresis, 30, 1388-1398. http://dx.doi.org/10.1002/elps.200800373 |
[64] |
Kostner, S., van den Driesche,
S., Witarski, W., Pastorekova, S. and Vellekoop, M.J. (2010) Guided
Dielectrophoresis: A Robust Method for Continuous Particle and Cell
Separation. IEEE Sensors Journal, 10, 1440-1446. http://dx.doi.org/10.1109/JSEN.2010.2044787 |
[65] |
Sabuncu, A.C., Liu, J.A., Beebe,
S.J. and Beskok, A. (2010) Dielectrophoretic Separation of Mouse
Melanoma Clones. Biomicrofluidics, 4, Article ID: 021101. http://dx.doi.org/10.1063/1.3447702 |
[66] |
Yang, F., Yang, X.M., Jiang, H.,
Bulkhaults, P., Wood, P., Hrushesky, W. and Wang, G.R. (2010)
Dielectrophoretic Separation of Colorectal Cancer Cells.
Biomicrofluidics, 4, Article ID: 013204. http://dx.doi.org/10.1063/1.3279786 |
[67] |
Alazzam, A., Stiharu, I., Bhat,
R. and Meguerditchian, A.N. (2011) Interdigitated Comb-Like Electrodes
for Continuous Separation of Malignant Cells from Blood Using
Dielectrophoresis. Electrophoresis, 32, 1327-1336. http://dx.doi.org/10.1002/elps.201000625 |
[68] |
Han, K.H., Han, A. and Frazier,
A.B. (2006) Microsystems for Isolation and Electrophysiological Analysis
of Breast Cancer Cells from Blood. Biosensors and Bioelectronics, 21,
1907-1914. http://dx.doi.org/10.1016/j.bios.2006.01.024 |
[69] |
Cho, Y., Kim, H.S., Frazier,
A.B., Chen, Z.G., Shin, D.M. and Han, A. (2009) Whole-Cell Impedance
Analysis for Highly and Poorly Metastatic Cancer Cells. Journal of
Microelectromechanical Systems, 18, 808-817. http://dx.doi.org/10.1109/JMEMS.2009.2021821 |
[70] |
Mamouni, J. and Yang, L. (2011)
Interdigitated Microelectrode-Based Microchip for Electrical Impedance
Spectroscopic Study of Oral Cancer Cells. Biomedical Microdevices, 13,
1075-1088. http://dx.doi.org/10.1007/s10544-011-9577-8 |
[71] |
Yang, L.J., Arias, L.R., Lane,
T.S., Yancey, M.D. and Mamouni, J. (2011) Real-Time Electrical
Impedance-Based Measurement to Distinguish Oral Cancer Cells and
Non-Cancer Oral Epithelial Cells. Analytical and Bioanalytical
Chemistry, 399, 1823-1833. http://dx.doi.org/10.1007/s00216-010-4584-9 |
[72] |
Xu, Y.H., Yang, X.R. and Wang,
E.K. (2010) Review: Aptamers in Microfluidic Chips. Analytica Chimica
Acta, 683, 12-20. http://dx.doi.org/10.1016/j.aca.2010.10.007 |
[73] |
Voldman, J. (2006) Electrical
Forces for Microscale Cell Manipulation. Annual Review of Biomedical
Engineering, 8, 425-454. http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739 |
[74] |
Tay, F.E.H., Yu, L.M. and
Iliescu, C. (2009) Particle Manipulation by Miniaturised
Dielectrophoretic Devices. Defence Science Journal, 59, 595-604. http://dx.doi.org/10.14429/dsj.59.1564 |
[75] |
Zhang, C., Khoshmanesh, K.,
Mitchell, A. and Kalantarzadeh, K. (2010) Dielectrophoresis for
Manipulation of Micro/ Nano Particles in Microfluidic Systems.
Analytical and Bioanalytical Chemistry, 396, 401-420. http://dx.doi.org/10.1007/s00216-009-2922-6 |
[76] |
Khoshmanesh, K., Nahavandi, S.,
Baratchi, S., Mitchell, A. and Kalantarzadeh, K. (2011)
Dielectrophoretic Platforms for Bio-Microfluidic Systems. Biosensors and
Bioelectronics, 26, 1800-1814. http://dx.doi.org/10.1016/j.bios.2010.09.022 |
[77] |
Kim, D.H., Wong, P.K., Park, J.,
Levchenko, A. and Sun, Y. (2009) Microengineered Platforms for Cell
Mechanobiology. Annual Review of Biomedical Engineering, 11, 203-233. http://dx.doi.org/10.1146/annurev-bioeng-061008-124915 |
[78] |
Loh, O., Vaziri, A. and
Espinosa, H. (2009) The Potential of MEMS for Advancing Experiments and
Modeling in Cell Mechanics. Experimental Mechanics, 49, 105-124. http://dx.doi.org/10.1007/s11340-007-9099-8 |
[79] |
Vanapalli, S.A., Duits, M.H.G.
and Mugele, F. (2009) Microfluidics as a Functional Tool for Cell
Mechanics. Biomicrofluidics, 3, Article ID: 012006. http://dx.doi.org/10.1063/1.3067820 |
[80] | Rajagopalan, J. and Saif, M.T.A. (2011) MEMS Sensors Andmicrosystems for Cell Mechanobiology. Journal of Micromechanics and Microengineering, 21, Article ID: 054002. |
[81] | Zheng, X.Y.R. and Zhang, X. (2011) Microsystems for Cellular Force Measurement: A Review. Journal of Micromechanics and Microengineering, 21, Article ID: 054003. |
[82] |
Zheng, Y. and Sun, Y. (2011)
Microfluidic Devices for Mechanical Characterisation of Single Cells in
Suspension. Micro & Nano Letters, 6, 327-331. http://dx.doi.org/10.1049/mnl.2011.0010 |
[83] | Morgan, H., Sun, T., Holmes, D., Gawad, S. and Green, N.G. (2007) Single Cell Dielectric Spectroscopy. Journal of Physics D: Applied Physics, 40, 61-70. |
[84] |
Valero, A., Braschler, T. and
Renaud, P. (2010) A Unified Approach to Dielectric Single Cell Analysis:
Impedance and Dielectrophoretic Force Spectroscopy. Lab on a Chip, 10,
2216-2225. http://dx.doi.org/10.1039/c003982a |
[85] |
Cheung, K.C., Di Berardino, M.,
Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., Mittag,
A. and Tárnok, A. (2010) Microfluidic Impedance-Based Flow Cytometry.
Cytometry Part A, 77A, 648-666. http://dx.doi.org/10.1002/cyto.a.20910 |
[86] |
Cheung, L.S.L., Zheng, X.G.,
Stopa, A., Baygents, J.C., Guzman, R., Schroeder, J.A., Heimark, R.L.
and Zohar, Y. (2009) Detachment of Captured Cancer Cells under Flow
Acceleration in a Bio-Functionalized Microchannel. Lab on a Chip, 9,
1721-1731. http://dx.doi.org/10.1039/b822172c |
[87] | Wang, S.T., Wang, H., Jiao, J., Chen, K.J., Owens, G.E., Kamei, K.I., Sun, J., Sherman, D.J., Behrenbruch, C.P., Wu, H. and Tseng, H.R. (2009) Angewandte Chemie, 121, 9132; (2009) Angewandte Chemie International Edition in English, 48, 8970. |
[88] |
Squires, T.M. and Quake, S.R.
(2005) Microfluidics: Fluid Physics at the Nanoliter Scale. Reviews of
Modern Physics, 77, 977. http://dx.doi.org/10.1103/RevModPhys.77.977 |
[89] |
Whitesides, G.M. (2006) The
Origins and the Future of Microfluidics. Nature, 442, 368-373. http://dx.doi.org/10.1038/nature05058 |
[90] |
Hoshino, K., Huang, Y.Y., Lane,
N., Huebschman, M., Uhr, J.W., Frenkel, E.P. and Zhang, X. (2011)
Microchip-Based Immunomagnetic Detection of Circulating Tumor Cells. Lab
on a Chip, 11, 3449-3457. http://dx.doi.org/10.1039/c1lc20270g |
[91] |
Mauk, M.G., Ziober, B.L., Chen,
Z.Y., Thompson, J.A. and Bau, H.H. (2007) Lab-on-a-Chip Technologies for
Oral-Based Cancer Screening and Diagnostics—Capabilities, Issues, and
Prospects. Annals of the New York Academy of Sciences, 1098, 467-475. http://dx.doi.org/10.1196/annals.1384.025 |
[92] | Estes, M.D., Ouyang, B., Ho, S.M. and Ahn, C.H. (2009) Isolation of Prostate Cancer Cell Subpopulations of Functional Interest by Use of an On-Chip Magnetic Bead-Based Cell Separator. Journal of Micromechanics and Microengineering, 19, Article ID: 095015. |
[93] |
Lee, H., Yoon, T.J., Figueiredo,
J.L., Swirski, F.K. and Weissleder, R. (2009) Rapid Detection and
Profiling of Cancer Cells in Fine-Needle Aspirates. Proceedings of the
National Academy of Sciences of the United States of America, 106,
12459-12464. http://dx.doi.org/10.1073/pnas.0902365106 |
[94] |
Chen, C.L., Chen, K.C., Pan,
Y.C., Lee, T.P., Hsiung, L.C., Lin, C.M., Chen, C.Y., Lin, C.H., Chiang,
B.L. and Wo, A. M. (2011) Separation and Detection of Rare Cells in a
Microfluidic Disk via Negative Selection. Lab on a Chip, 11, 474-483. http://dx.doi.org/10.1039/c0lc00332h eww141027lx |
评论
发表评论