Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50968#.VFG4FVfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50968#.VFG4FVfHRK0
Author(s)
It is
known that the adsorption of surfactants at the liquid crystal
(LC)/aqueous interface can induce a bipolar-to-radial director
configuration of LC droplets dispersed in aqueous solution. In this
paper, we study the effect of charged polyelectrolyte-coating on the
interaction of surfactants and LC droplet cores by observing the
director configuration of the LC droplet cores as a function of
surfactant concentrations. It is found that surfactants can penetrate
into the polyelectrolyte coating and react with the LC droplet cores to
induce the bipolar-to-radial transition of the LC inside the droplet
cores. However, the concentration of charged surfactants required to
induce the configuration transition of the LC droplet cores is affected
by the charged polyelectrolyte coating. The effect is significantly
enlarged with decreasing the alkyl chain length of charged surfactants.
Our results highlight the possibility of engineering polyelectrolyte
coatings to tune the interaction of LC droplets with analysts, which is
critical towards designing LC droplet based sensors.
KEYWORDS
Cite this paper
Bera, T. and Fang, J. (2014) Interaction of
Surfactants and Polyelectrolyte-Coated Liquid Crystal Droplets. Journal of Materials Science and Chemical Engineering, 2, 1-7. doi: 10.4236/msce.2014.211001.
[1] | Volovik, G.E. and Lavrentovich, O.D. (1983) Topological Dynamics of Defects: Boojums in Nematic Drops. Journal of Experimental and Theoretical Physics, 58, 1159-1167. |
[2] |
Hsu, P., Poulin, P. and Weitz,
D.A. (1998) Rotational Diffusion of Monodisperse Liquid Crystal
Droplets. Journal of Colloid and Interface Science, 200, 182-184. http://dx.doi.org/10.1006/jcis.1997.5223 |
[3] |
Juodkazis, S., Shikata, M.,
Takahashi, T., Matsuo, S. and Misawa, H. (1999) Fast Optical Switching
by a Laser Manipulated Microdroplet of Liquid Crystal. Applied Physics
Letters, 74, 3627-3629. http://dx.doi.org/10.1063/1.123203 |
[4] |
Wood, T.A., Gleeson, H.F.,
Dickinson, M.R. and Wright, A.J. (2004) Mechanisms of Optical Angular
Momentum Transfer to Nematic Liquid Crystalline Droplets. Applied
Physics Letters, 84, 4292-4294. http://dx.doi.org/10.1063/1.1753067 |
[5] |
Brasselet, E., Murazawa, N.,
Misawa, H. and Juodkazis, S. (2009) Optical Vortices from Liquid Crystal
Droplets. Physical Review Letters, 103, 103903. http://dx.doi.org/10.1103/PhysRevLett.103.103903 |
[6] |
Miller, D.S., Wang, X. and
Abbott, N.A. (2014) Design of Functional Materials Based on Liquid
Crystalline Droplets. Chemistry of Materials, 26, 496-506. http://dx.doi.org/10.1021/cm4025028 |
[7] | Lin, I.H., Miller, D.S., Bertics, P.J., Murphy, C.J., de Pablo, J.J. and Abbott, N.L. (2011) Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets. Science, 332, 1297-1300. http://dx.doi.org/10.1126/science.1195639 |
[8] |
Umbanhowar, P.B., Prasad, V. and
Weitz, D.A. (2000) Monodisperse Emulsion Generation via Drop Break off
in a Coflowing Stream. Langmuir, 16, 347-351. http://dx.doi.org/10.1021/la990101e |
[9] |
Tixier, T., Heppenstall-Butler,
M., Terentjev, E.M., Tixier, T., Heppenstall-Butler, M. and Terentjev,
E.M. (2006) Spontaneous Size Selection in Cholesteric and Nematic
Emulsions. Langmuir, 22, 2365-2370. http://dx.doi.org/10.1021/la0531953 |
[10] | Tjipto, E., Cadwell, K.D., Quinn, J.F., Johnston, A.P.R., Caruso, F. and Abbott, N.L. (2006) Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly. Nano Letters, 6, 2243-2248. http://dx.doi.org/10.1021/nl061604p |
[11] |
Simon, K.A., Sejwal, P.,
Gerecht, R.B. and Luk, Y.-Y. (2007) Water-in-Water Emulsions Stabilized
by Non-Amphiphilic Interactions: Polymer-Dispersed Lyotropic Liquid
Crystals. Langmuir, 23, 1453-1458. http://dx.doi.org/10.1021/la062203s |
[12] |
Kinsinger, M.L., Buck, M.E.,
Abbott, N.L. and Lynn, D.M. (2010) Immobilization of Polymer-Decorated
Liquid Crystal Droplets on Chemically Tailored Surfaces. Langmuir, 26,
10234-10242. http://dx.doi.org/10.1021/la100376u |
[13] |
Zou, J., Bera, T., Davis, A.A.,
Liang, W. and Fang, J.Y. (2011) Director Configuration Transitions of
Polyelectrolyte Coated Liquid-Crystal Droplets. The Journal of Physical
Chemistry B, 115, 8970-8974. http://dx.doi.org/10.1021/jp201909m |
[14] | Aliño, V.A., Pang, J. and Yang, K.L. (2011) Liquid Crystal Droplets as a Hosting and Sensing Platform for Developing Immunoassays. Langmuir, 27, 11784-11789. http://dx.doi.org/10.1021/la2022215 |
[15] |
Khan, W., Choi, J.H., Kim, G.M.
and Park, S.Y. (2011) Microfluidic Formation of pH Responsive 5CB
Droplets Decorated with PAA-b-LCP. Lab on a Chip, 11, 3493-3498. http://dx.doi.org/10.1039/c1lc20402e |
[16] |
Bera, T. and Fang, J.Y. (2012)
Polyelectrolyte-Coated Liquid Crystal Droplets for Detecting Charged
Macromolecules. Journal of Materials Chemistry, 22, 6807-6812. http://dx.doi.org/10.1039/C2JM00038E |
[17] |
Aliño, V.J., Sim, P.H., Choy,
W.T., Fraser, A. and Yang, K.Y. (2012) Detecting Proteins in
Microfluidic Channels Decorated with Liquid Crystal Sensing Dots.
Langmuir, 28, 17571-17577. http://dx.doi.org/10.1021/la303213h |
[18] | Manna, U., Zayas-Gonzalez, Y.M., Carlton, R.J., Caruso, F., Abbott, N.L. and Lynn, D.M. (2013) Liquid Crystal Chemical Sensors That Cells Can Wear. Angewandte Chemie International Edition, 52, 14011-14015. http://dx.doi.org/10.1002/anie.201306630 |
[19] |
Kim, J., Khan, M. and Park, S.Y.
(2013) Glucose Sensor Using Liquid-Crystal Droplets Made by
Microfluidics. ACS Applied Materials Interfaces, 5, 13135-13139. http://dx.doi.org/10.1021/am404174n |
[20] |
Bera, T. and Fang, J.Y. (2014)
Protein-Induced Configuration Transition of Polyelectrolyte-Modified
Liquid Crystal Droplets. The Journal of Physical Chemistry B, 118,
4970-4977. http://dx.doi.org/10.1021/jp501587h |
[21] |
Murazawa, N., Juodkazis, S. and
Misawa, H. (2005) Characterization of Bipolar and Radial Nematic Liquid
Crystal Droplets Using Laser-Tweezers. Journal of Physics D: Applied
Physics, 38, 2923-2927. http://dx.doi.org/10.1088/0022-3727/38/16/027 |
[22] | Bera, T. and Fang, J.Y. (2013) Optical Detection of Lithocholic Acid with Liquid Crystal Emulsions. Langmuir, 29, 387-392. http://dx.doi.org/10.1021/la303771t |
[23] | Malone, S.M. and Schwartz, D.K. (2008) Polar and Azimuthal Alignment of a Nematic Liquid Crystal by Alkylsilane Self-Assembled Monolayers: Effects of Chain-Length and Mechanical Rubbing. Langmuir, 24, 9790-9794. http://dx.doi.org/10.1021/la801322x |
[24] |
Price, A.D. and Schwartz, D.K.
(2007) Fatty-Acid Monolayers at the Nematic/Water Interface: Phases and
Liquid-Crystal Alignment. The Journal of Physical Chemistry B, 111,
1007-1015. http://dx.doi.org/10.1021/jp066228b |
[25] |
Brake, J.M. and Abbott, N.L.
(2002) An Experimental System for Imaging the Reversible Adsorption of
Amphiphiles at Aqueous-Liquid Crystal Interfaces. Langmuir, 18,
6101-6109. http://dx.doi.org/10.1021/la011746t |
[26] |
Fang, J.Y., Gehlert, U.,
Shashidhar, R. and Knobler, C.M. (1999) Imaging the Azimuthal Tilt Order
in Monolayers by Liquid Crystal Optical Amplification. Langmuir, 15,
297-299. http://dx.doi.org/10.1021/la9812929 eww141030lx |
评论
发表评论