Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50252#.VDNPhFfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50252#.VDNPhFfHRK0
Author(s)
In this paper, we define the Weibull kernel and use
it to nonparametric estimation of the probability density function (pdf)
and the hazard rate function for independent and identically
distributed (iid) data. The bias, variance and the optimal bandwidth of
the proposed estimator are investigated. Moreover, the asymptotic
normality of the proposed estimator is investigated. The performance of
the proposed estimator is tested using simulation study and real data.
Cite this paper
Salha, R. , El Shekh Ahmed, H. and Alhoubi, I.
(2014) Hazard Rate Function Estimation Using Weibull Kernel. Open Journal of Statistics, 4, 650-661. doi: 10.4236/ojs.2014.48061.
[1] | Salha, R. (2012) Hazard Rate Function Estimation Using Inverse Gaussian Kernel. The Islamic University of Gaza Journal of Natural and Engineering Studies, 20, 73-84. |
[2] | Salha, R. (2013) Estimating the Density and Hazard Rate Functions Using the Reciprocal Inverse Gaussian Kernel. 15th Applied Stochastic Models and Data Analysis International Conference, Mataro (Barcelona), 25-28 June 2013. |
[3] |
Scaillet, O. (2004) Density
Estimation Using Inverse and Reciprocal Inverse Gaussian Kernels.
Nonparametric Statistics, 16, 217-226. http://dx.doi.org/10.1080/10485250310001624819 |
[4] |
Watson, G. and Leadbetter, M. (1964) Hazard Analysis I. Biometrika, 51, 175-184.
http://dx.doi.org/10.1093/biomet/51.1-2.175 |
[5] | Rice, J. and Rosenblatt, M. (1976) Estimation of the Log Survivor Function and Hazard Function. Sankhya Series A, 38, 60-78. |
[6] |
Cline, D.B.H. and Hart, J.D.
(1991) Kernel Estimation of Densities of Discontinuous Derivatives.
Statistics, 22, 69-84.
http://dx.doi.org/10.1080/02331889108802286 |
[7] |
Schuster, E.F. (1985)
Incorporating Support Constraints into Nonparametric Estimators of
Densities. Communications in Statistics, Part A—Theory and Methods, 14,
1123-1136. http://dx.doi.org/10.1080/03610928508828965 |
[8] |
Silverman, B.W. (1986) Density
Estimation for Statistics and Data Analysis. Chapman and Hall, London.
http://dx.doi.org/10.1007/978-1-4899-3324-9 |
[9] |
Cheng, M.Y., Fan, J. and Marron,
J.S. (1997) On Automatic Boundary Corrections. The Annals of
Statistics, 25, 1691-1708. http://dx.doi.org/10.1214/aos/1031594737 |
[10] |
Zhang, S. and Karunamuni, R.J.
(1998) On Kernel Density Estimation near Endpoints. Journal of
Statistical Planning and Inference, 70, 301-316. http://dx.doi.org/10.1016/S0378-3758(97)00187-0 |
[11] |
Chen, S.X. (2000) Probability
Density Function Estimation Using Gamma Kernels. Annals of the Institute
of Statistical Mathematics, 52, 471-480. http://dx.doi.org/10.1023/A:1004165218295 eww141007lx |
评论
发表评论