Green Synthesis and Characterization of Gold Nanoparticles: Study of Its Biological Mechanism in Human SUDHL-4 Cell Line
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50290#.VDSReFfHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50290#.VDSReFfHRK0
Author(s)
In this investigation, the anticancer potentiality and biological
mechanism of gold nanoparticles (AuNPs) was studied in SUDHL-4 cell line.
Metallic AuNPs were prepared and stabilized with ethanol clove (Syzygium aromaticum) extract. The green
synthesis of AuNPs was characterized and evaluated by UV-Visible Spectroscopic,
X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR),
Transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) and biological
activities using various biochemical assays. Green synthesis of AuNPs was
confirmed by instrument method. The TEM images show polydis-perse, mostly
spherical AuNPs particles of 12 - 20 nm. AuNPs were decreased the growth and viability of SU-DHL-4
cell line and increased the apoptosis. The treatments of SU-DHL-4 cells with
AuNPs resulted in a moderate considerably increase in Reactive oxygen species
(ROS) production. We measured apoptosis by Annexin-V/propidium iodide (PI) in
the existence and nonexistence of the antioxidant N-acetyl-L-cysteine (NAC),
the glutathione-depleting agent buthionine sulfoximine (BSO), or caspase
inhibitors to determine the mechanism of cell death. AuNPs are unique potential
anticancer agents that cause ROS-dependent apoptosis in SUDHL-4 cell line which
was improved by depletion of glutathione (GHS) and inhibited by
N-acetyl-L-cysteine on Z-VAD-FMK.
KEYWORDS
Cite this paper
Parida, U. , Biswal, S. and Bindhani, B. (2014)
Green Synthesis and Characterization of Gold Nanoparticles: Study of Its
Biological Mechanism in Human SUDHL-4 Cell Line. Advances in Biological Chemistry, 4, 360-375. doi: 10.4236/abc.2014.46041.
[1] | Stylianou, A. and Talias, M.A. (2013) Nanotechnology-Supported THz Medical Imaging. F1000 Research, 2, 100. |
[2] | Barkalina, N., Charalambous, C., Jones, C. and Coward, K. (2014) Nanotechnology in Reproductive Medicine: Emerging Applications of Nanomaterials. Nanomedicine, 9634, 25-32. |
[3] | Tassel, P.R. (2013) Nanotechnology in Medicine: Nanofilm Biomaterials. Yale Journal of Biology and Medicine, 86, 527-536. |
[4] |
Kim, T. and Hyeon, T. (2014)
Applications of Inorganic Nanoparticles as Therapeutic Agents.
Nanotechnology, 25, 012001. http://dx.doi.org/10.1088/0957-4484/25/1/012001 |
[5] | Madani, S.Y., Mandel, A. and Seifalian, A.M. (2013) A Concise Review of Carbon Nanotube’s Toxicology. Nano Reviews, 4, 21521. |
[6] | Park, H., Hwang, M.P. and Lee, K.H. (2013) Immunomagnetic Nanoparticle-Based Assays for Detection of Biomarkers. International Journal of Nanomedicine, 8, 4543-4552. |
[7] |
Tay, C.Y., Irvine, S.A., Boey,
F.Y., Tan, L.P. and Venkatraman, S. (2011) Micro-/Nano-Engineered
Cellular Responses for Soft Tissue Engineering and Biomedical
Applications. Small, 7, 1361-1378. http://dx.doi.org/10.1002/smll.201100046. |
[8] |
Rodríguez-Cabello, J.C., Martín,
G.L.A., García-Arévalo, C., Arias, F.J. and Alonso, M. (2011) Emerging
Applications of Multifunctional Elastin-Like Recombinamers.
Nanomedicine, 6, 111-122. http://dx.doi.org/10.2217/nnm.10.141 |
[9] |
Sonvico, F., Dubernet, C.,
Colombo, P. and Couvreur, P. (2005) Metallic Colloid Nanotechnology,
Applications in Diagnosis and Therapeutics. Current Pharmaceutical
Design, 11, 2095-2105. http://www.ncbi.nlm.nih.gov/pubmed/15974961 |
[10] | Baker, S., Rakshith, D.K., Kavitha, S., Santosh, P., Kavitha, H.U., Rao, Y. and Satish, S. (2013) Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles. Bioimpacts, 3, 111-117. |
[11] |
Nath, D. and Banerjee, P. (2013)
Green Nanotechnology—A New Hope for Medical Biology. Environmental
Toxicology and Pharmacology, 36, 997-1014. http://dx.doi.org/10.1016/j.etap.2013.09.002 |
[12] |
Das, R.K. and Brar, S.K. (2013)
Plant Mediated Green Synthesis: Modified Approaches. Nanoscale, 5,
10155-10162. http://dx.doi.org/10.1039/c3nr02548a |
[13] |
Rai, M. and Yadav, A. (2013)
Plants as Potential Synthesiser of Precious Metal Nanoparticles:
Progress and Prospects. IET Nanobiotechnology, 7, 117-124. http://dx.doi.org/10.1049/iet-nbt.2012.0031 |
[14] |
Seabra, A.B., Haddad, P. and
Duran, N. (2012) Biogenic Synthesis of Nanostructured Iron Compounds:
Applications and Perspectives. IET Nanobiotechnology, 7, 90-99. http://dx.doi.org/10.1049/iet-nbt.2012.0047 |
[15] |
Talat, M., Singh, A.K. and
Srivastava, O.N. (2011) Optimization of Process Variables by Central
Composite Design for the Immobilization of Urease Enzyme on
Functionalized Gold Nanoparticles for Various Applications. Bioprocess
and Biosystems Engineering, 34, 647-657. http://dx.doi.org/10.1007/s00449-011-0514-2 |
[16] |
Raghunandan, D., Bedre, M.D.,
Basavaraja, S., Sawle, B., Manjunath, S.Y. and Venkataraman, A. (2010)
Rapid Biosynthesis of Irregular Shaped Gold Nanoparticles from Macerated
Aqueous Extracellular Dried Clove Buds Solution. Colloids and Surfaces
B: Biointerfaces, 79, 235-240. http://dx.doi.org/10.1016/j.colsurfb.2010.04.003 |
[17] | El-Batal, A.I., Hashem, A.A. and Abdelbaky, N.M. (2013) Gamma Radiation Mediated Green Synthesis of Gold Nanoparticles Using Fermented Soybean-Garlic Aqueous Extract and Their Antimicrobial Activity. SpringerPlus, 2, 129. |
[18] |
Menon, D., Basanth, A., Retna
kumari, A., Manzoor, K. and Nair, S.V. (2012) Green Synthesis of
Biocompatible Goldnanocrystals with Tunable Surface Plasmon Resonance
Using Garlic Phytochemicals. Journal of Biomedical Nanotechnology, 8,
901-911. http://dx.doi.org/10.1166/jbn.2012.1455 |
[19] |
Singh, D.K., Jagannathan, R.,
Khandelwal, P., Braham, A.P.M. and Poddar, P. (2013) In Situ Synthesis
and Surface Functionalization of Gold Nanoparticles with Curcumin and
Their Antioxidant Properties: An Experimental and Density Functional
Theory Investigation. Nanoscale, 5, 1882-1893. http://dx.doi.org/10.1039/c2nr33776b |
[20] |
Sneha, K., Sathishkumar, M.,
Lee, S.Y., Bae, M.A. and Yun, Y.S. (2011) Biosynthesis of Au
Nanoparticles Using Cumin Seed Powder Extract. Journal of Nanoscience
and Nanotechnology, 11, 1811-1814. http://dx.doi.org/10.1166/jnn.2011.3414 |
[21] |
Smitha, S.L. and Gopchandran,
K.G. (2013) Surface Enhanced Raman Scattering, Antibacterial and
Antifungal Active Triangular Gold Nanoparticles. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 102, 114-119. http://dx.doi.org/10.1016/j.saa.2012.09.055 |
[22] |
Chanda, N., Shukla, R., Zambre,
A., Mekapothula, S., Kulkarni, R.R., Katti, K., Bhattacharyya, K., Fent,
G.M., Casteel, S.W., Boote, E.J., Viator, J.A., Upendran, A., Kannan,
R. and Katti, K.V. (2011) An Effective Strategy for the Synthesis of
Biocompatible Gold Nanoparticles Using Cinnamon Phytochemicals for
Phantom CT Imaging and Photoacoustic Detection of Cancerous Cells.
Pharmaceutical Research, 28, 279-291. http://dx.doi.org/10.1007/s11095-010-0276-6 |
[23] |
Smitha, S.L., Philip, D. and
Gopchandran, K.G. (2009) Green Synthesis of Gold Nanoparticles Using
Cinnamomum zeylanicum Leaf Broth. Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, 74, 735-739. http://dx.doi.org/10.1016/j.saa.2009.08.007 |
[24] |
Fragoon, A., Li, J., Zhu, J. and
Zhao, J. (2012) Biosynthesis of Controllable Size and Shape Gold
Nanoparticles by Black Seed (Nigella sativa) Extract. Journal of
Nanoscience and Nanotechnology, 12, 2337-2345. http://dx.doi.org/10.1166/jnn.2012.5739 |
[25] |
Huang, H. and Yang, X. (2004)
Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A
Green Method. Carbohydrate Research, 339, 2627-2631. http://dx.doi.org/10.1016/j.carres.2004.08.005 |
[26] |
You, J., Hu, H., Zhou, J.,
Zhang, L., Zhang, Y. and Kondo, T. (2013) Novel Cellulose
Polyampholyte-Gold Nanoparticle-Based Colorimetric Competition Assay for
the Detection of Cysteine and Mercury(II). Langmuir, 29, 5085-5092. http://dx.doi.org/10.1021/la3050913 |
[27] |
Shervani, Z. and Yamamoto, Y.
(2011) Carbohydrate-Directed Synthesis of Silver and Goldnanoparticles:
Effect of the Structure of Carbohydrates and Reducing Agents on the Size
and Morphology of the Composites. Carbohydrate Research, 346, 651-658. http://dx.doi.org/10.1016/j.carres.2011.01.020 |
[28] |
Kattumuri, V., Katti, K.,
Bhaskaran, S., Boote, E.J., Casteel, S.W., Fent, G.M., Robertson, D.J.,
Chandrasekhar, M., Kannan, R. and Katti, K.V. (2007) Gum Arabic as a
Phytochemical Construct for the Stabilization of Gold Nanoparticles: In
Vivo Pharmacokinetics and X-Ray-Contrast-Imaging Studies. Small, 3,
333-341. http://dx.doi.org/10.1002/smll.200600427 |
[29] |
Ramakrishnan, A., Pandit, N.,
Badgujar, M., Bhaskar, C. and Rao, M. (2007) Encapsulation of
Endoglucanase Using a Biopolymer Gum Arabic for Its Controlled Release.
Bioresource Technology, 98, 368-372. http://dx.doi.org/10.1016/j.biortech.2005.12.020 |
[30] |
Leonor, S.J., Gómez, J.A.,
Kinoshita, A., Calandreli, I., Tfouni, E. and Baffa, O. (2013) ESR
Spectroscopic Properties of Irradiated Gum Arabic. Food Chemistry, 141,
1860-1864. http://dx.doi.org/10.1016/j.foodchem.2013.04.095 |
[31] | Effiong, U., Williams, D., Otto, W. and Anderson, W. (2004) Gum Arabic Surface Modified Magnetic Nanoparticles for Cancer Therapy. Proceedings of the IEEE 30th Annual Northeast Bioengineering Conference, Springfield, 17-18 April 2004, 243-244. |
[32] |
Tiwari, S.B. and Amiji, M.
(2006) A Review of Nanocarrier-Based CNS Delivery Systems. Current Drug
Delivery, 3, 219-232. http://dx.doi.org/10.2174/156720106776359230 |
[33] |
Nallathamby, P.D. and Xu, X.H.
(2010) Study of Cytotoxic and Therapeutic Effects of Stable and Purified
Silver Nanoparticles on Tumor Cells. Nanoscale, 2, 942-952. http://dx.doi.org/10.1039/c0nr00080a |
[34] |
Asharani, P.V., Lian, W.Y.,
Gong, Z. and Valiyaveettil, S. (2008) Toxicity of Silver Nanoparticles
in Zebrafish Models. Nanotechnology, 19, Article ID: 255102. http://dx.doi.org/10.1088/0957-4484/19/25/255102 |
[35] |
Bunz, F., Hwang, P.M. and
Torrance, C. (1999) Disruption of p53 in Human Cancer Cells Alters the
Responses to Therapeutic Agents. Journal of Clinical Investigation, 104,
263-269. http://dx.doi.org/10.1172/JCI6863 |
[36] | Li, J., Gupta, S. and Li, C. (2013) Research Perspectives: Gold Nanoparticles in Cancer Theranostics. Quantitative Imaging in Medicine and Surgery, 3, 284-291. |
[37] |
Nossier, A.I., Eissa, S.,
Ismail, M.F., Hamdy, M.A. and Azzazy, H.M. (2014) Direct Detection of
Hyaluronidase in Urine Using Cationic Gold Nanoparticles: A Potential
Diagnostic Test for Bladder Cancer. Biosensors and Bioelectronics, 54,
7-14. http://dx.doi.org/10.1016/j.bios.2013.10.024 |
[38] |
Sánchez-Paradinas, S. and
Pérez-Andrés, M. (2014) Enhanced Cytotoxic Activity of Bile Acid
Cisplatin Derivatives by Conjugation with Gold Nanoparticles. Journal of
Inorganic Biochemistry, 131, 8-11. http://dx.doi.org/10.1016/j.jinorgbio.2013.10.021 |
[39] |
Suman, T.Y. and Rajasree, S.R.
(2014) The Green Syntheses of Gold Nanoparticles Using an Aqueous Root
Extract of Morinda citrifolia L. Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, 118, 11-16. http://dx.doi.org/10.1016/j.saa.2013.08.066 |
[40] |
Leonard, K., Ahmmad, B.,
Okamura, H. and Kurawaki, J. (2011) In Situ Green Synthesis of
Biocompatible Ginseng Capped Gold Nanoparticles with Remarkable
Stability. Colloids and Surfaces B: Biointerfaces, 82, 391-396. http://dx.doi.org/10.1016/j.colsurfb.2010.09.020 |
[41] |
Green, D.E., Longtin, J.P. and
Sitharaman, B. (2009) The Effect of Nanoparticle-Enhanced Photoacoustic
Stimulation on Multipotent Marrow Stromal Cells. ACS Nano, 3, 2065-2072.
http://dx.doi.org/10.1021/nn900434p |
[42] |
Yang, S., Damiano, M.G. and
Zhang, H. (2013) Biomimetic, Synthetic HDL Nanostructures for Lymphoma.
Proceedings of the National Academy of Sciences of the United States of
America, 110, 2511-2516. http://dx.doi.org/10.1073/pnas.1213657110 |
[43] |
Minai, L., Yeheskely-Hayon, D.,
Golan, L., Bisker, G., Dann, E.J. and Yelin, D. (2012) Optical Nano
Manipulations of Malignant Cells: Controlled Cell Damage and Fusion.
Small, 8, 1732-1739. http://dx.doi.org/10.1002/smll.201102304 |
[44] |
Minai, L., Yeheskely-Hayon, D.
and Yelin, D. (2013) High Levels of Reactive Oxygen Species in Gold
Nanoparticle-Targeted Cancer Cells Following Femtosecond Pulse
Irradiation. Scientific Reports, 3, Article No. 2146. http://dx.doi.org/10.1038/srep02146 |
[45] |
Qu, X., Yao, C., Wang, J., Li,
Z. and Zhang, Z. (2012) Anti-CD30-Targeted Gold Nanoparticles for
Photothermal Therapy of L-428 Hodgkin’s Cell. International Journal of
Nanomedicine, 7, 6095-6103. http://dx.doi.org/10.2147/IJN.S37212 |
[46] |
Lin, Y.W., Chen, Y.C., Wang,
C.W., Chen, W.T., Liu, C.M., Chen, C.Y. and Chang, H.T. (2013) Gold
Nanosponges: Green Synthesis, Characterization and Cytotoxicity. Journal
of Nanoscience and Nanotechnology, 13, 6566-6574. http://dx.doi.org/10.1166/jnn.2013.7770 |
[47] |
Shi, Y., Yi, C., Zhang, Z.,
Zhang, H., Li, M., Yang, M. and Jiang, Q. (2013) Peptide-Bridged
Assembly of Hybrid Nanomaterial and Its Application for Caspase-3
Detection. ACS Applied Materials Interfaces, 5, 6494-6501. http://dx.doi.org/10.1021/am401935y |
[48] |
Jun, Y.-W., Sheikholeslami, S.,
Hostetter, D.R., Tajon, C., Craik, C.S. and Alivisatos, A.P. (2009)
Continuous Imaging of Plasmon Rulers in Live Cells Reveals Early-Stage
Caspase-3 Activation at the Single-Molecule Level. Proceedings of the
National Academy of Sciences of the United States of America, 106,
17735-17740. http://dx.doi.org/10.1073/pnas.0907367106 |
[49] |
Patra, H.K., Banerjee, S.,
Chaudhuri, U., Lahiri, P. and Dasgupta, A.K. (2007) Cell Selective
Response to Gold Nano-particles. Nanomedicine: Nanotechnology, Biology
and Medicine, 3, 111-119. http://dx.doi.org/10.1016/j.nano.2007.03.005 eww141008lx |
评论
发表评论