A Greener Approach for Synthesis of Functionalized Polyolefins by Introducing Reactive Functionality into Ethylene Copolymers
Read full paper at:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48512#.VDtK_1fHRK0
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48512#.VDtK_1fHRK0
Author(s)
Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan.
Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan.
Korea Institute of Industrial Technology, Ansan, Republic of Korea.
Korea Institute of Industrial Technology, Ansan, Republic of Korea.
Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan.
Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan.
Korea Institute of Industrial Technology, Ansan, Republic of Korea.
Korea Institute of Industrial Technology, Ansan, Republic of Korea.
Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan.
Recent successful examples for synthesis of new polyolefins containing (polar)
functionalities by adopting the approaches by controlled incorporation of
reactive functionalities (and the subsequent introduction of polar functionalities
under mild conditions) by coordination polymerization in the presence of
transition metal complex catalysts have been described. Related methods (such
as direct copolymerization of olefin with polar monomer using living radical or
coordination insertion methods) have also been demonstrated for comparison. Our
recent efforts for precise synthesis of polyolefins containing polar
functionalities by efficient incorporation of reactive functionality by
copolymerization of ethylene with nonconjugateddiene (1,7-octadiene, vinylcyclohexene
etc.) or divinyl-biphenyl using nonbridged half-titanocene [ex. Cp’TiCl2(O-2,6-iPr2C6H3),
Cp’ = C5Me5, tBuC5H4 etc.] catalysts have been introduced.
Cite this paper
Apisuk, W. , Tsutsumi, K. , Joon Kim, H. , Hyun Kim,
D. and Nomura, K. (2014) A Greener Approach for Synthesis of
Functionalized Polyolefins by Introducing Reactive Functionality into
Ethylene Copolymers. Green and Sustainable Chemistry, 4, 133-143. doi: 10.4236/gsc.2014.43018.
[1] |
Mason, A.F. and Coates, G.W.
(2007) Coordination Polymerization: Synthesis of New Homo- and Copolymer
Architectures from Ethylene and Propylene Using Homogeneous
Ziegler-Natt Polymerization Catalysts. In: Matyjaszewski, K., Gnanou, Y.
and Leibler L., Eds., Macromolecular Engineering, Wiley-VCH, Weinheim,
1, 217-248. http://dx.doi.org/10.1002/9783527631421.ch6. |
[2] |
Brintzinger, H.H., Fischer, D.,
Mülhaupt, R., Rieger, B. and Waymouth, R.M. (1995) Stereospecific Olefin
Polymerization with Chiral Metallocene Catalysts. Angewandte Chemie
International Edition in English, 34, 1143-1170. http://dx.doi.org/10.1002/anie.199511431 |
[3] | Kaminsky, W. (1996) New Polymers by Metallocene Catalysis. Macromolecular Chemistry and Physics, 197, 3907-3945. http://dx.doi.org/10.1002/macp.1996.021971201 |
[4] |
Kaminsky, W. and Arndt, M.
(1997) Metallocenes for Polymer Catalysis. Advances in Polymer Science,
127, 143-187. http://dx.doi.org/10.1007/BFb0103631 |
[5] |
Suhm, J., Heinemann, J., Worner,
C., Müller, P., Stricker, F., Kressler, J., Okuda, J. and Mülhaupt, R.
(1998) Novel Polyolefin Materials via Catalysis and Reactive Processing.
Macromolecular Symposia, 129, 1-28. http://dx.doi.org/10.1002/masy.19981290103 |
[6] | McKnight, A.L. and Waymouth, R.M. (1998) Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chemical Reviews, 98, 2587-2598. http://dx.doi.org/10.1021/cr940442r |
[7] |
Britovsek, G.J.P., Gibson, V.C.
and Wass, D.F. (1999) TheSearch for New-Generation Olefin Polymerization
Catalysts: Life beyond Metallocenes. Angewandte Chemie International
Edition in English, 38, 428-447. http://dx.doi.org/1433-7851/99/3804-0429 |
[8] | Gibson, V.C. and Spitzmesser, S.K. (2003) Advances in Non-Metallocene Olefin Polymerization Catalysis. Chemical Reviews, 103, 283-316. http://dx.doi.org/10.1021/cr980461r |
[9] |
Bolton, P.D. and Mountford, P.
(2005) Transition Metal Imido Compounds as Ziegler-Natta Olefin
Polymerisation Catalysts. Advanced Synthesis & Catalysis, 347,
355-366. http://dx.doi.org/10.1002/adsc.200404267 |
[10] |
Gladysz, J. A. (Ed.) (2000)
Frontiers in Metal-Catalyzed Polymerization. Chemical Reviews, 100,
1167-1682. http://dx.doi.org/10.1021/cr000450 |
[11] | Guan, Z. (Ed.) (2009) Metal Catalysts in Olefin Polymerization. Topics in Organometallic Chemistry, 26, 3-251. |
[12] |
Nomura, K., Liu, J.,
Padmanabhan, S. and Kitiyanan, B. (2007) Nonbridged Half-Metallocenes
Containing Anionic Ancillary Donor Ligands: New Promising Candidates as
Catalysts for Precise Olefin Polymerization. Journal of Molecular
Catalysis A: Chemical, 267, 1-29. http://dx.doi.org/10.1016/j.molcata.2006.11.006 |
[13] |
Nomura, K. (2009)
Half-Titanocenes Containing Anionic Ancillary Donor Ligands as Promising
New Catalysts for Precise Olefin Polymerization. Dalton Transactions,
41, 8811-8823. http://dx.doi.org/10.1039/B910407K |
[14] |
Nomura, K. and Liu, J. (2011)
Half-Titanocenes for Precise Olefin Polymerisation: Effects of Ligand
Substituents and Some Mechanistic Aspects. Dalton Transactions, 40,
7666-7682. http://dx.doi.org/10.1039/C1DT10086F |
[15] | Schellenberg, J. (Ed.) (2010) Syndiotactic Polystyrene—Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken. |
[16] | Tomotsu, N., Ishihara, N., Newman, T.H. and Malanga, M.T. (1998) Syndiospecific Polymerization of Styrene. Journal of Molecular Catalysis A: Chemical, 128, 167-190. http://dx.doi.org/10.1016/S1381-1169(97)00171-4 |
[17] | Schellenberg, J. (2009) Recent Transition Metal Catalysts for Syndiotactic Polystyrene. Progress in Polymer Science, 34, 688-718. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.002 |
[18] | Nomura, K. (2010) Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken, 60-91. |
[19] |
Nomura, K. (2011) Syndiospecific
Styrene Polymerization and Ethylene/Styrene Copolymerization Using
Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects.
Catalysis Surveys from Asia, 14, 33-49. http://dx.doi.org/10.1007/s10563-010-9086-4 |
[20] | Chung, T.C. (2002) Functionalization of Polyolefins. Academic Press, San Diego. |
[21] | Boffa, L.S. and Novak, B.M. (2000) Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chemical Reviews, 100, 1479-1494. http://dx.doi.org/10.1021/cr990251u |
[22] | Chung, T.C. (2002) Synthesis of Functional Polyolefin Copolymers with Graft and Block Structures. Progress in Polymer Science, 27, 39-85. http://dx.doi.org/10.1016/S0079-6700(01)00038-7 |
[23] |
Chung, T.C. (2012)
Functionalization of Polypropylene with High Dielectric Properties:
Applications in Electric Energy Storage. Green and Sustainable
Chemistry, 2, 29-37. http://dx.doi.org/10.4236/gsc.2012.22006 |
[24] | Boaen, N.K. and Hillmyer, M.A. (2005) Post-Polymerization Functionalization of Polyolefins. Chemical Society Reviews, 34, 267-275. http://dx.doi.org/10.1039/B311405H |
[25] | Nakamura, A., Ito, S. and Nozaki, K. (2009) Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chemical Reviews, 109, 5215-5244. http://dx.doi.org/10.1021/cr900079r |
[26] |
Nakamura, A., Anselment, T.M.J.,
Claverie, J., Goodall, B., Jordan, R.F., Mecking, S., Rieger, B., Sen,
A., van Leeuwen, P.W.N.M. and Nozaki, K. (2013)
Ortho-Phosphinobenzenesulfonate: A Superb Ligand for Palladium-Catalyzed
Coordination-Insertion Copolymerization of Polar Vinyl Monomers.
Account of Chemical Research, 46, 1438-1449. http://dx.doi.org/10.1021/ar300256h |
[27] | Doak, K.W. (1986) Low Density Polyethylene (High Pressure). In: Mark, H.F., Ed., Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, 6, 386-429. |
[28] | Moad, G. (1999) The Synthesis of Polyolefin Graft Copolymers by Reactive Extrusion. Progress in Polymer Science, 24, 81-142. http://dx.doi.org/10.1016/S0079-6700(98)00017-3 |
[29] |
Nomura, K. and Kitiyanan, B.
(2008) Recent Progress in Precise Synthesis of Polyolefins Containing
Polar Functionalities by Transition Metal Catalysis. Current Organic
Synthesis, 5, 217-226. http://dx.doi.org/10.2174/157017908785133456 |
[30] |
Nomura, K. (2010) New Approaches
in Precise Synthesis of Polyolefins Containing Polar Functionalities by
OlefinCopolymerizations Using Transition Metal Catalysts. Journal of
Synthetic Organic Chemistry, Japan, 68, 1150-1158. http://dx.doi.org/10.5059/yukigoseikyokaishi.68.1150 |
[31] |
Chung, T.C., Lu, H.L. and Li,
C.L. (1994) Synthesis and Functionalization of Unsaturated Polyethylene:
Poly(ethy-lene-co-1,4-hexadiene). Macromolecules, 27, 7533-7537.
http://dx.doi.org/10.1021/ma00104a005 |
[32] | Itagaki, K., Fujiki, M. and Nomura, K. (2007) Effect of Cyclopenta Dienyl and Anionic Donor Ligands on Monomer Reactivities in Copolymerization of Ethylene with 2-Methyl-1-pentene by Nonbridged Half-Titanocenes-Cocatalyst Systems. Macromolecules, 40, 6489-6499. http://dx.doi.org/10.1021/ma0700429 |
[33] |
Nomura, K., Hatanaka, Y.,
Okumura, H., Fujiki, M. and Hasegawa, K. (2004) Polymerization of
1,5-Hexadiene by the Nonbridged Half-Titanocene Complex-MAO Catalyst
System: Remarkable Difference in the Selectivity of Repeated
1,2-Insertion. Macromolecules, 37, 1693-1695. http://dx.doi.org/10.1021/ma049938t |
[34] |
Nomura, K., Takemoto, A.,
Hatanaka, Y., Okumura, H., Fujiki, M. and Hasegawa, K. (2006)
Polymerization of 1,5-Hexadiene by Half-Titanocenes-MAO Catalyst
Systems: Factors Affecting the Selectivity for the Favored Repeated
1,2-Insertion. Macromolecules, 39, 4009-4017.
http://dx.doi.org/10.1021/ma0604892 |
[35] | Nomura, K., Liu, J., Fujiki, M. and Takemoto, A. (2007) Facile, Efficient Functionalization of Polyolefins via Controlled Incorporation of Terminal Olefins by Repeated 1,7-Octadiene Insertion. Journal of the American Chemical Society, 129, 14170-14171. http://dx.doi.org/10.1021/ja076633w |
[36] |
Naga, N., Shiono, T. and Ikeda,
T. (1999) Cyclopolymerization of 1,7-Octadiene with
Metallocene/Methylaluminox- ane. Macromolecular Chemistry and Physics,
200, 1466-1472. http://dx.doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1466::AID-MACP1466>3.0.CO;2-N |
[37] |
Apisuk, W. and Nomura, K. (2014)
Efficient Terpolymerization of Ethylene and Styrene with 1,7-Octadiene
by Aryloxo Modified Half-Titanocenes-Cocatalyst Systems: Efficient
Introduction of the Reactive Functionality. Macromolecular Chemistry and
Physics, Early View. http://dx.doi.org/10.1002/macp.201400143 |
[38] |
Itagaki, K. and Nomura, K.
(2009) Efficient Synthesis of Functionalized Polyolefin by Incorporation
of 4-Vinylcyclo-hexene in Ethylene Copolymerization Using
Half-Titanocene Catalysts. Macromolecules, 42, 5097-5103. http://dx.doi.org/10.1021/ma900732k |
[39] |
Nomura, K. and Itagaki, K.
(2005) Efficient Incorporation of Vinylcylohexane in
Ethylene/Vinylcyclohexane Copolymerization Catalyzed by Nonbridged
Half-Titanocenes. Macromolecules, 38, 8121-8123.
http://dx.doi.org/10.1021/ma051439k |
[40] |
Wang, W., Fujiki, M. and Nomura,
K. (2005) Copolymerization of Ethylene with Cyclohexene (CHE) Catalyzed
byNonbridged Half-Titanocenes Containing Aryloxo Ligand: Notable Effect
of Both Cyclopentadienyl and Anionic Donor Ligand for Efficient CHE
Incorporation. Journal of the American Chemical Society, 127, 4582-4583.
http://dx.doi.org/10.1021/ja050274s |
[41] |
Apisuk, W., Kitiyanan, B., Kim,
H.J., Kim, D.H. and Nomura, K. (2013) Introduction of Reactive
Functionality by the Incorporation of Divinylbiphenyl in Ethylene
Copolymerization with Styrene or 1-Hexene Using Aryloxo-Modified
Half-Titanocenes and MAO Catalysts. Journal of Polymer Science Part A:
Polymer Chemistry, 51, 2581-2587. http://dx.doi.org/10.1002/pola.26639 |
[42] |
Chung, T.C. and Dong, J.Y.
(2001) A Novel Consecutive Chain Transfer Reaction to p-Methylstyrene
and Hydrogen during Metallocene-Mediated Olefin Polymerization. Journal
of the American Chemical Society, 123, 4871-4876. http://dx.doi.org/10.1021/ja0039280 |
[43] |
Caporaso, L., Iudici, N. and
Oliva, L. (2006) A Novel Route to Graft-Copolymers with Tailored
Structures for the Compatibilization of Polymeric Blend. Macromolecular
Symposia, 234, 42-50. http://dx.doi.org/10.1002/masy.200650207 |
[44] | Apisuk, W., Suzuki, N., Kim, H.J., Kim, D.H., Kitiyanan, B. and Nomura, K. (2013) Efficient Terpolymerization of Ethylene and Styrene with α-Olefins by Aryloxo-Modified Half-Titanocene-Based Catalysts and Cocatalyst Systems. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2565-2574. http://dx.doi.org/10.1002/pola.26637 |
[45] |
Liu, J. and Nomura, K. (2008)
Efficient Functional Group Introduction into Polyolefins by
Copolymerization of Ethylene with Allyltrialkylsilane Using Nonbridged
Half-Titanocenes. Macromolecules, 41, 1070-1072. http://dx.doi.org/10.1021/ma800031h |
[46] |
Byun, D.J., Shin, S.M., Han,
C.J. and Kim, S.Y. (1999) Chain Transfer Reaction in Metallocene
Catalyzed Ethylene Copolymerization with Allyltrimethylsilane. Polymer
Bulletin, 43, 333-340. http://dx.doi.org/10.1007/s002890050619 |
[47] | Stoebenau III, E.J. and Jordan, R.J. (2006) Nonchelated d0 Zirconium-Alkoxide-Alkene Complexes. Journal of the American Chemical Society, 128, 8162-8175. http://dx.doi.org/10.1021/ja0575225 |
[48] | Nomura, K., Kakinuki, K., Fujiki, M. and Itagaki, K. (2008) Direct Precise Functional Group Introduction into Polyolefins: Efficient Incorporation of Vinyltrialkylsilanes in Ethylene Copolymerizations by Nonbridged Half-Ttitanocenes. Macromolecules, 41, 8974-8976. http://dx.doi.org/10.1021/ma8020757 eww141013lx |
[49] | Kakinuki, K., Fujiki, M. and Nomura, K. (2009) Copolymerization of Ethylene with α-Olefins Containing Various Substituents Catalyzed by Half-Ttitanocenes: Factors Affecting the Monomer Reactivities. Macromolecules, 42, 4585-4595. http://dx.doi.org/10.1021/ma900576v |
评论
发表评论