跳至主要内容

Influence of Ionic Additives on the Pyrolysis Behavior of Paper

Pyrolysis is a thermochemical decomposition of organic material at elevated temperatures in the absence of oxygen (or any halogen). However, literature on the pyrolysis of finished paper products is rare.

In the course of this study, the influence of ionic additives (sodium, potassium, lithium, magnesium, and manganese as cations; acetate, lactate, malate, malonate, succinate, and citrate as anions) on the pattern of volatile pyrolysis products of finished paper was investigated. The pyrolysis of paper caused a cascade of reaction products. As expected, the most abundant pyrolysis product was levoglucosan, however, along with other volatile products, such as hydroxyl and carbonyl compounds, furan and pyran derivatives, phenols, and other anhydrosugars, respectively. These compounds could easily be separated and characterized online using analytical pyrolysis in combination with gas chromatography (GC) and mass spectrometry (MS) detection. Both the composition and total amount of volatile pyrolysis products were significantly altered when the paper samples contained metal salt ions and salts of organic acids, respectively. Principal Component Analysis (PCA) was employed for the multivariate analysis of the obtained pyrolysis products. This allowed for a qualitative interpretation on how the various ionic additives affected the formation of specific pyrolysis products. When organic acids were added onto the paper, the pyrolysis pattern mainly depended on the protic properties of the organic acids (mono/di/triprotic) and to a lesser extent on the type within a protic class (monoprotic acetate or lactate vs.diprotic malate or malonate or succinate vs. triprotic citrate).

In conclusion, the pyrolysis pattern of the paper samples was more markedly influenced by the type of metal ions rather than by the type of organic acid. These effects significantly depended on both the valence and the concentration of the specific metal salt. Further investigation of this topic will include a variation of the counter cations of various acids as well as a concentration series for anionic additives. In addition, other counter anions will have to be investigated in more detail in order to specifically attribute as many effects as possible.

Article by Karin Stadlmann, et al, from Austria.

Full access: http://mrw.so/qyHaa
Image by Peter Danilov, from Flickr-cc.

评论

此博客中的热门博文

A Comparison of Methods Used to Determine the Oleic/Linoleic Acid Ratio in Cultivated Peanut (Arachis hypogaea L.)

Cultivated peanut ( Arachis hypogaea L.) is an important oil and food crop. It is also a cheap source of protein, a good source of essential vitamins and minerals, and a component of many food products. The fatty acid composition of peanuts has become increasingly important with the realization that oleic acid content significantly affects the development of rancidity. And oil content of peanuts significantly affects flavor and shelf-life. Early generation screening of breeding lines for high oleic acid content greatly increases the efficiency of developing new peanut varieties. The objective of this study was to compare the accuracy of methods used to classify individual peanut seed as high oleic or not high oleic. Three hundred and seventy-four (374) seeds, spanning twenty-three (23) genotypes varying in oil composition (i.e. high oleic (H) or normal/not high oleic (NH) inclusive of all four peanut market-types (runner, Spanish, Valencia and Virginia), were individually tested ...

The Influence of Heated Soil in Crop of “Tamaris” Tomato Plants on the Biological Activity of the Rhizosphere Soil

Tomato is a plant with high heat requirements and sensitive to cold weather and frost. The optimum temperature for the growth of tomato plants is between 21˚C and 27˚C during the day and between 17˚C and 21˚C at night. The soil temperature is also very important for plant growth. The optimum soil temperature for tomato cultivation should be within the range 15˚C - 18˚C. Besides, the proper development of the root system depends on the optimal temperature of the soil. A temperature below 14˚C reduces and inhibits the growth of the root system and encourages the development of fungal and bacterial diseases. In this study, the authors aimed to evaluate the effect of heated soil on the population of bacteria, fungi and nematodes inhabiting the soil of tomato cultivar “Tamaris” growing in peat and coconut substrates. The experiment was carried out in 12 treatments and in 3 replications (one slab was one replication). The soils were tested in two different types of containers: cylinders...

Effect of Proline Pretreatment on Grapevine Shoot-Tip Response to a Droplet-Vitrification Protocol

Proline is an α-amino acid that is used in the biosynthesis of proteins. Some studies have shown that proline has been accumulated in plants in response to biotic and abiotic stresses. Exogenous proline has thus been used for improving some plant cryopreservation protocols. Further enhancement of cryopreservation efficiency for  in vitro  grapevines could be expected if stresses linked to cryopreservation procedures could be reduced. In this study, the authors studied the possible beneficial effect of proline in grapevine cryopreservation. Single-node explants from  in vitro  grown grapevine plantlets ( Vitis vinifera  L. cv Portan) were cultured on shooting media (half-strength MS + 1 μM BAP) containing no proline (control) or 50, 500, or 2000 μM filter-sterilized L-proline. Shoot tips excised from these microshoots were subjected to a PVS2-based droplet-vitrification procedure. Control and rewarmed explants were grown on a recovery medium containing ...