跳至主要内容

Water Use of Juvenile Live Oak (Quercus virginiana) Trees over Five Years in a Humid Climate

Trees planted in urban landscapes often require irrigation during all stages of life. Landscape tree water management requires reasonable estimates of water demand in order to schedule irrigation amounts and timing to conserve water while maintaining tree health. Estimating tree water demand is not straightforward for water demand of isolated trees as typically found in urban landscapes is affected by numerous factors.

To meet minimum spring flows, water management districts in Florida sought to make both agriculture and urban landscapes water efficient, which includes tree farms. Quercus virginiana, commonly known as live oak trees, is endemic to Central Florida and among the most popular landscape trees for their gracefulness and spreading shade.

In this study, to provide a basis for irrigation allocations both during production and in landscapes, daily actual evapotranspiration (ETA) in liters for three live oak trees was measured with weighing lysimeters over five years, beginning with seedlings and continuing until trees averaged 7.2 meters in height. Empirical models were derived to calculate ETA based on crown horizontal projected area (PCA) or trunk caliper (TCSA), adjusted daily by changes in evapotranspiration (ETO). Average ETA to produce these live oaks was 62,218 L cumulative over 5.5 years. Effectively transpiring leaf, tree water use volume divided by ETO, was closely related to PCA over five years with the slope of this relationship being equivalent to a Plant Factor of 0.93. The product of ETO and this Plant Factor can be used to estimate depth of live oak water demand in urban landscapes. Also, this Plant Factor can estimate water demand volume in nurseries and landscapes when combined with PCA, and similarly the slopes for TCSA can be used to estimate ETA water volume from measured trunk diameter.

In conclusion, daily ETA of Quercus virginiana can be estimated with high precision based on the methods of calculating ETO and using the appropriate coefficients (for PCA or TCSA) for a given measure of tree capacity to move and transpire water. 

Article by Richard C. Beeson, et al, from University of Florida, Apopka, FL, USA.

Full access: http://mrw.so/3qjsKJ

Image by Ruy Urraca, from Flickr-cc.

评论

此博客中的热门博文

Identifying Sustainable Practices for Tapping and Sap Collection from Birch Trees

Tapping and collecting sap from birch trees ( Betula , sp.) for the production of beverages and syrup is gaining increased levels of interest. Although the practice of tapping birch trees and collecting sap has been ongoing for millennia across the world, there remain some critical data needed in order to make science-based decisions about the production practices required to optimize yields and ensure sustainable outcomes are achieved in the long-term. In this study, experiments were conducted to determine two pieces of information essential to identify practices necessary to ensure tapping trees for birch sap collection were both sustainable and profitable—the selection of the time to initiate tapping birch trees to obtain maximum yields, and the volume of nonconductive wood (NCW) associated with taphole wounds in birch trees. The yields obtained from various timing treatments varied between sapflow seasons, but indicated that using test tapholes to choose the appropriate ti

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university

Esophageal Carcinogenesis

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50380#.VDy9v1fHRK0 Author(s)   Naoki Watanabe 1 , Masahito Shimizu 2 , Takahiro Kochi 2 , Yohei Shirakami 2 , Takuji Tanaka 1,3* Affiliation(s) 1 Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, Japan . 2 Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan . 3 Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan . ABSTRACT Esophageal cancer is the sixth leading cause of cancer death and remains one of the least survivable cancers. Esophageal cancers show wide variations in incidence in different pop