跳至主要内容

Crop Discrimination Using Field Hyper Spectral Remotely Sensed Data

Accuracy of crop classification for high spatial resolution satellite imagery in the intensively cultivated lands of the Egyptian Nile delta is still low. The main objective of this research was to determine the optimal hyperspectral wavebands in the spectral range of (400 - 2500 nm) to discriminate between two winter crops (wheat and clover) and two summer crops (maize and rice). This was considered as the first step to improve crop classification through satellite imagery in the intensively cultivated areas in Egypt.

Hyperspectral ground measurements of ASD field Spec3 spectroradiometer was used to monitor the spectral reflectance profile during the period of the maximum growth stage of the four crops. 1-nm-wide was aggregated to 10-nm-wide bandwidths. After accounting for atmospheric windows and/or areas of significant noise, a total of 2150 narrow bands in 400 - 2500 nm were used in the analysis. Spectral reflectance was divided into six spectral zones: blue, green, red, near-infrared, shortwave infrared-I and shortwave infrared-II. One Way ANOVA and Tukey’s HSD post hoc analysis was performed to choose the optimal spectral zone that could be used to differentiate the different crops. Then, linear regression discrimination (LDA) was used to identify the specific optimal wavebands in the spectral zones in which each crop could be spectrally identified.

The results of Tukey’s HSD showed that blue, NIR, SWIR-1 and SWIR-2 spectral zones were more sufficient in the discrimination between wheat and clover than green and red spectral zones. At the same time, all spectral zones were quite sufficient to discriminate between rice and maize. The results of LDA showed that the wavelength zone (727:1299 nm) was the optimal to identify clover crop while three zones (350:712, 1451:1562, 1951:2349 nm) could be used to identify wheat crop. The spectral zone (730:1299 nm) was the optimal to identify maize crop while three spectral zones were the best to identify rice crop (350:713, 1451:1532, 1951:2349 nm). An average of thirty measurements for each crop was considered in the process.

These results would be used in machine learning process to improve the performance of the existing remote sensing software’s to isolate the different crops in intensive cultivated lands.

Article by Sayed M. Arafat, et al, from National Authority for Remote Sensing and Space Sciences (NARSS), Cairo, Egypt.

Full access: http://mrw.so/2c9WGm

Image by MARY LF, from Flickr-cc.

评论

此博客中的热门博文

Identifying Sustainable Practices for Tapping and Sap Collection from Birch Trees

Tapping and collecting sap from birch trees ( Betula , sp.) for the production of beverages and syrup is gaining increased levels of interest. Although the practice of tapping birch trees and collecting sap has been ongoing for millennia across the world, there remain some critical data needed in order to make science-based decisions about the production practices required to optimize yields and ensure sustainable outcomes are achieved in the long-term. In this study, experiments were conducted to determine two pieces of information essential to identify practices necessary to ensure tapping trees for birch sap collection were both sustainable and profitable—the selection of the time to initiate tapping birch trees to obtain maximum yields, and the volume of nonconductive wood (NCW) associated with taphole wounds in birch trees. The yields obtained from various timing treatments varied between sapflow seasons, but indicated that using test tapholes to choose the appropriate ti

Incorporation of High-Altitude Balloon Experiment in High School Science Classrooms

High-altitude balloon is a balloon, filled usually with helium or hydrogen that ascends into an area called “near space” or stratosphere. The most common type of high-altitude balloons are weather balloons. Other purposes include use as a platform for experiments in the upper atmosphere. Modern balloons generally contain electronic equipment such as radio transmitters, cameras, or satellite navigation systems, such as GPS receivers. The mission of the High-Altitude Balloon Experiment (HABE) is to acquire supporting data, validate enabling technologies, and resolve critical acquisition, tracking, and pointing (ATP) and fire control issues in support of future space-based precision pointing experiments. The use of high-altitude balloons offers a relatively low-cost, low-vibration test platform, a recoverable and reusable payload, worldwide launch capability, and a 'near- space' emulation of the future space systems operational scenarios. More recently, several university

Esophageal Carcinogenesis

Read full paper at: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50380#.VDy9v1fHRK0 Author(s)   Naoki Watanabe 1 , Masahito Shimizu 2 , Takahiro Kochi 2 , Yohei Shirakami 2 , Takuji Tanaka 1,3* Affiliation(s) 1 Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, Japan . 2 Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan . 3 Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan . ABSTRACT Esophageal cancer is the sixth leading cause of cancer death and remains one of the least survivable cancers. Esophageal cancers show wide variations in incidence in different pop